REVISED MINUTES OF THE JOIDES EXECUTIVE COMMITTEE

January 26 - 28, 1993

COFFS HARBOUR, N.S.W., AUSTRALIA

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>ii</td>
</tr>
<tr>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>Executive Committee Minutes</td>
<td>3</td>
</tr>
<tr>
<td>Tuesday, January 26, 1993</td>
<td></td>
</tr>
<tr>
<td>Item 541. Initial Business</td>
<td></td>
</tr>
<tr>
<td>1. Approval of Minutes of the June 15 - 17, 1992 Meeting in Washington, D. C.</td>
<td>3</td>
</tr>
<tr>
<td>2. Review of the Agenda</td>
<td>3</td>
</tr>
<tr>
<td>Item 542. Reports</td>
<td>3</td>
</tr>
<tr>
<td>1. Membership Reports</td>
<td>3</td>
</tr>
<tr>
<td>a) Canada/Australia</td>
<td>3</td>
</tr>
<tr>
<td>b) ECOD</td>
<td>3</td>
</tr>
<tr>
<td>c) France</td>
<td>4</td>
</tr>
<tr>
<td>d) Germany</td>
<td>4</td>
</tr>
<tr>
<td>e) Japan</td>
<td>4</td>
</tr>
<tr>
<td>f) United Kingdom</td>
<td>4</td>
</tr>
<tr>
<td>g) United States</td>
<td>4</td>
</tr>
<tr>
<td>2. ODP Council Report</td>
<td>5</td>
</tr>
<tr>
<td>a) Technical and Support Staff Internationalization</td>
<td>5</td>
</tr>
<tr>
<td>b) Russian Participation</td>
<td>5</td>
</tr>
<tr>
<td>c) MOUs</td>
<td>5</td>
</tr>
<tr>
<td>3. Program Management Reports (Current Operations)</td>
<td>5</td>
</tr>
<tr>
<td>a) JOI</td>
<td>5</td>
</tr>
<tr>
<td>b) Science Operator Report, TAMU</td>
<td>5</td>
</tr>
<tr>
<td>c) Wireline Logging Services Report, LDEO</td>
<td>7</td>
</tr>
<tr>
<td>d) PCOM Report</td>
<td>7</td>
</tr>
<tr>
<td>4. 1994 Program Plan Reports</td>
<td>9</td>
</tr>
<tr>
<td>a) NSF Budget Planning Letter</td>
<td>9</td>
</tr>
<tr>
<td>b) 1994 Budget Planning</td>
<td>9</td>
</tr>
<tr>
<td>c) 1994 PCOM Science Plan</td>
<td>9</td>
</tr>
<tr>
<td>d) Discussion</td>
<td>10</td>
</tr>
<tr>
<td>5. Long Range Planning Reports</td>
<td>10</td>
</tr>
<tr>
<td>a) Four-Year Plan</td>
<td>10</td>
</tr>
<tr>
<td>b) Future Platforms</td>
<td>10</td>
</tr>
<tr>
<td>c) The Scope of ODP</td>
<td>10</td>
</tr>
<tr>
<td>Thursday, January 28, 1993</td>
<td></td>
</tr>
<tr>
<td>Item 543. Old Business</td>
<td>11</td>
</tr>
<tr>
<td>1. JOIDES Office RFP</td>
<td>11</td>
</tr>
<tr>
<td>2. Wireline Logging RFP</td>
<td>12</td>
</tr>
<tr>
<td>3. Public Relations Strategy</td>
<td>12</td>
</tr>
<tr>
<td>Item 544. New Business</td>
<td>13</td>
</tr>
<tr>
<td>1. 1994 Management Issues</td>
<td>13</td>
</tr>
<tr>
<td>a) BCOM Issues and Schedule</td>
<td>13</td>
</tr>
<tr>
<td>2. Canadian ODP Participation</td>
<td>13</td>
</tr>
<tr>
<td>3. Use of Existing Boreholes</td>
<td>13</td>
</tr>
<tr>
<td>4. Internationalization of the ODP Program Revisited</td>
<td>13</td>
</tr>
<tr>
<td>5. JOIDES Panel Membership Issues</td>
<td>14</td>
</tr>
<tr>
<td>a) Wording Changes to the Operating Procedures</td>
<td>14</td>
</tr>
<tr>
<td>b) Panel Chairs and National Memberships</td>
<td>14</td>
</tr>
<tr>
<td>6. New Members</td>
<td>15</td>
</tr>
<tr>
<td>Item 545. Future Business</td>
<td>16</td>
</tr>
<tr>
<td>1. Dates and Places for Future EXCOM Meetings</td>
<td>16</td>
</tr>
<tr>
<td>Selected Acronyms and Abbreviations</td>
<td>17</td>
</tr>
<tr>
<td>Appendices</td>
<td>19</td>
</tr>
</tbody>
</table>
PARTICIPANTS

Executive Committee (EXCOM)

Helmut Beiersdorf - Bundesanstalt für Geowissenschaften und Rohstoffe (Germany)
James Briden - Natural Environment Research Council (United Kingdom)
Douglas Caldwell - Oregon State University, College of Oceanography
Craig Dorman - Woods Hole Oceanographic Institution
Robert Duce - Texas A&M University, College of Geosciences and Maritime Studies
David Falvey - Bureau of Mineral Resources (Canada-Australia Consortium)
Dennis Kent - Columbia University, Lamont-Doherty Earth Observatory
Barry Raleigh - University of Hawaii, School of Ocean and Earth Science and Technology
Kazuo Kobayashi - Ocean Research Institute, University of Tokyo (Japan)
Yves Lancelot - Laboratoire de Géologie du Quaternaire (France)
Margaret Leinen - University of Rhode Island, Graduate School of Oceanography
Arthur Maxwell - University of Texas at Austin, Institute for Geophysics
Arthur Nowell (Chair) - University of Washington, College of Ocean and Fishery Sciences
John Orcutt - University of California, San Diego, Scripps Institution of Oceanography
Bruce Rosendahl - University of Miami, Rosenstiel School of Marine and Atmospheric Science
Renzo Sartori - University of Bologna, European Science Foundation (Consortium for Ocean Drilling)

Liaisons

Jack Baldauf - Science Operator (ODP-TAMU)
David Goldberg - Wireline Logging Services (ODP-LDEO)
Donald Heinrichs - National Science Foundation and ODP Council
Brian Lewis - PCOM Chair, University of Washington
Thomas Pyle - Joint Oceanographic Institutions, Inc.
Philip Rabinowitz - Science Operator (ODP-TAMU)

Guests and Observers

Michele Fratta - European Science Foundation (Consortium for Ocean Drilling)
G. Ross Heath - University of Washington, College of Ocean and Fishery Sciences
Kenkichi Hirose - Ocean Development Division, Science and Technology Agency, Japan
Katsuyoshi Omori - Planning Department of JAMSTEC, Japan
Francois Madelain - IFREMER, France
Dietrich Maronde - Deutsche Forschungsgemeinschaft, Germany

JOIDES Office, University of Washington

Bill Collins - Executive Assistant and non-US Liaison
Karen Schmitt - Science Coordinator
The January meeting of EXCOM was held January 26-28, 1993 at Coffs Harbour, N.S.W., Australia. The following is a brief, indexed summary of the meeting.

APPROVALS

1. Minutes
 EXCOM approved the minutes of the June 15-17, 1992 meeting in Washington D.C.

ENDORSEMENTS AND RECOMMENDATIONS

1. JOIDES Office
 EXCOM endorsed, with a motion, the selection, by JOI Inc., of the UK JOIDES member to host the JOIDES Office for FY95-FY96.

2. Public Relations Strategy for JOI Inc.
 EXCOM endorsed, by consensus, the Public Relations Strategy proposal presented by JOI Inc. and instructed JOI Inc. to incorporate it into the FY94 Program Plan, the decision for the exact funding level would be left for BCOM to consider in March.

3. Canadian Participation
 Recognizing the value of the scientific contributions Canada has made and continues to make in the Ocean Drilling Program, the JOIDES Executive Committee passed a motion urging Canada to make every effort to maintain its current participation.

POLICY UPDATES

1. Wireline Re-entry of DSDP and ODP Boreholes
 EXCOM updated its 1987 policy on wireline re-entry of DSDP and ODP boreholes to include notification of PCOM, through the JOIDES Office, by passing the following motion (changes in bold):
 "The JOIDES Executive Committee actively encourages the use of the Deep Sea Drilling Project and Ocean Drilling Program boreholes for scientific purposes by both the D/V JOIDES Resolution and independent vessels through wireline re-entry. The drilling program has historically sought to maintain a catalog of hole conditions for those sites with installed re-entry equipment in order to facilitate scientific planning, in order to maintain such a list and to protect JOIDES interests in future use of these holes, the JOIDES Executive Committee requests that parties desiring to use any of these holes seek endorsement of the Planning Committee, through the JOIDES Office, prior to their use. In addition, a written report to the Science Operator on the state of the holes used is requested following the conduct of these experiments. We trust that all member institutions and governments will adhere to this agreement and will ensure that those announcements and reports are made in a timely fashion."

2. Panel Membership
 EXCOM agreed, by consensus, that countries were not entitled to an additional panel member when their representative member became chair of that panel.

ITEMS OF BUSINESS

1. Core Repository Facilities
 EXCOM passed the following motion in regards to core repository facilities:
 "Given that EXCOM recommended that ODP/TAMU should retain responsibility for curation repositories through 1998, and, given that the program requires not only cost minimization but also scientific, logistic and international considerations, EXCOM requests ODP/TAMU:
 A) curate cores as appropriate for upcoming legs for an interim period until:
 B) quotes from any interested JOIDES members have been requested and received to provide curation and repository facilities. Criteria for evaluation will include overall operating cost minimization, performance, total cost — including capital construction, and long-term scientific community benefit to the program."
This request for quotes for curation and storage of new core will be promulgated by ODP/TAMU no later than 1 March 1993. Recommendations on the issue will be made by EXCOM in June 1993, based on evaluation by a panel of 3 EXCOM members in June 1993.

Furthermore, EXCOM requests all interested members to consider capital construction for repositories in the period 1998—onwards and will issue detailed procedures no later than June 1995

2. International Partnership

EXCOM passed a motion that established an ad hoc working group of four (JOI liaison - Baker, Australia - Falvey, ESF - Sartori, US member - Leinen) to energize efforts to sustain and increase international partnership.

3. Long-Range Strategy

EXCOM Chair requested that Raleigh prepare a report for the June meeting on long-range science planning and long-range strategy.

MEMBERSHIP CHANGES

1. BCOM

EXCOM approved either Lancelot or Taira as replacements for Riddihough should the necessity for his replacement arise. The Chair would contact each and determine who would fulfill the BCOM responsibility.

FUTURE EXCOM MEETINGS

1. June 1993

The next EXCOM meeting will be in College Station, Texas on June 22 - 24, 1993.

2. January 1994

The January meeting of EXCOM will be hosted by ORI in Japan. The exact location was undetermined and likely dates would be in the last week of January.

RETIREMENT

EXCOM recognized Kazuo Kobayashi for his many years of service to EXCOM. This was his last EXCOM meeting, he will be retiring from Ocean Research Institute of Japan in the spring.
EXECUTIVE COMMITTEE REVISED MINUTES

Tuesday, January 26, 1993

ITEM 541. INITIAL BUSINESS

1. Approval of Minutes of the June 15 - 17, 1992 Meeting in Washington, D. C.

Motion - EXCOM adopts the minutes of the June 15 - 17, 1992 meeting in Washington D.C.

Maxwell proposed, Orcutt seconded; vote: 16 in favor.

2. Review of the Agenda

Nowell reviewed the agenda and items to be addressed in the reports to EXCOM.

ITEM 542. REPORTS

1. Membership Reports
 a) Canada/Australia

 Falvey brought EXCOM up to date on the status of the Canadian proposal to withdraw from ODP. He reported that Canada had originally notified Australia on December 24th that, as part of an overall budget reduction, Canada wished to withdraw by March 31, 1993. However, Australia’s MOU with Canada required 12 months notice of termination, so a compromise was reached that required Canada to stay in the consortium until September 1993. The final decision on Canadian ODP participation was going to be voted on in a cabinet meeting on January 28th and it might be possible that a decision would be known in time for the JOIBOG meeting on the 28th. Falvey added that the Canadians had stressed that this decision was not a commentary on ODP, emphasizing instead that the decision resulted from an internal funding problem.

 A Can/Aus Council meeting in Honolulu on March 5th would finalize a solution for the consortium. Falvey indicated that Canada was attempting to acquire additional partners to raise the necessary funds. The Australians were committed to continued funding, from all three of their funding sources. Australia’s problem was that their MOU agreement was with Canada not NSF. Falvey wanted to make it clear that the Australian position was that Can/Aus Consortium should be treated as if Canada would be involved as agreed; no easy-outs should be offered to Canada until the situation required it. However, if the Canadians withdraw, other partners for Australia could be considered. Falvey felt that Korea, Taiwan and Indonesia were potential replacements.

 A discussion followed on whether or not Canada had officially notified either Australia or NSF of what they were doing and of the timing of any official actions that Canada was considering. EXCOM also discussed the process Canada was going through to make this decision and what, if any, role EXCOM should have in the process. It was clear from the discussion that more information was needed on what the official Canadian position was and what letters had already been written by individual EXCOM members, JOI and NSF to Canadian officials. Nowell requested that he be briefed on any letters or actions taken by EXCOM members so that he could summarize them at an ad hoc session on Thursday morning where EXCOM could discuss the issue further. The issue was tabled for discussion in the ad hoc session on Thursday (8:15-9:00 am).

 b) ECOD

 Sartori discussed problems that the ESF Consortium was having regarding the management of the large number of partners, specifically the different currencies and different fiscal years. In regards to renewal, the prospects were good that all 12 partners in the consortium would renew if fees were not raised significantly higher; if there was to be a large increase there could be problems in keeping all the ECOD members. Some member countries had already signed the ESF MOU, new members might become involved in the future but such actions would not necessarily change the level of ESF participation; more than 90% of the fees were already collected for next fiscal year and Sartori saw no imminent problems in the renewal process.
c) France

Lancelot wanted to be candid about the French renewal position, specifically on the questions they had raised during renewal. Lancelot felt that there was definite, increased interest in ODP within France, largely because of other scientific programs that are linked with ODP. This, he felt, was a result of the change in emphasis of ODP from tool-oriented to science-oriented. Lancelot observed that the problem-solving type of thinking in ODP had improved and, as a result, science priorities were much improved. The LRP was an initial effort and had helped renew French interest in ODP. This situation would continue to improve if the main goals of ODP continued to be scientific and can be linked to other major programs in earth science.

Lancelot reported that France would renew for 5 years, on the condition that there be a major review after three years with a plan formulated to use the last two years to transition into a new program. As for why France had not yet signed the MOU, Lancelot explained that it was the political problem of upcoming fall elections. He emphasized that France supported the renewal but the actual signing could not be rushed into before the expected change in administration.

d) Germany

Beiersdorf reported Germany was ready to sign the MOU agreement. The only problem that still existed was in the intellectual properties clause, which would be solved shortly. Germany would sign for five years with an option for a 10 year commitment. Beiersdorf was concerned that if Germany did not sign soon there might be a financial renegotiation by the government due to current budget problems in Germany (caused by reunification).

The German ODP Colloquium would be held in March. It would be the first to be held in eastern Germany. Beiersdorf was also happy to announce that the first east German had participated in ODP on Leg 146. On a ministry level, the Ministry of Research and Technology would be establishing more formal links to ODP by sponsoring a workshop on marine science, with earth science playing an important thematic role; in part, this effort was being made because of the three German research ships capable of working with ODP-related projects.

Beiersdorf requested an overhead on German ODP structure that he did not have time to present be attached to the minutes (Appendix 1.0).

e) Japan

Kobayashi reported that the Japanese government had approved renewal for 5 years, formal approval would come by the end of March and the MOU would be signed after April 1, 1993. The Japanese Committee on ODP had met in November and selected Asahiko Taira to be the new EXCOM member after Kobayashi's retirement and Kiyoshi Suyehiro would replace Taira on PCOM.

After Kobayashi reviewed Japanese scientific plans for 1993, he asked Hirose and Omori to present their report on the status of the Japanese deep ocean drilling vessel plans and indicated that there was Japanese interest in international participation in this venture. Hirose then summarized the report (Appendix 2) for EXCOM.

f) United Kingdom

Briden was pleased to report that on December 7, 1992, the UK had signed the MOU with the US. The UK renewed for ten years, with review concerning the period beyond 1998. He applauded Japan for the initiative for long-term planning; changes like that foreseen for the Japanese deep ocean drilling vessel required long lead times.

Briden then gave a review of other scientific news from the UK:
1. North Atlantic paleoceanography cruises would be beginning this spring
2. The Trans-Atlantic Geotraverse (TAG) hydrothermal site survey scheduled
3. Mid-Ocean Ridge funding was coming on line
4. a swath bathymetric system would be put on the R/V Darwin.
5. the R/V Discovery was stretched 10 meters and would be refitted with a new seismic system; it would be doing World Ocean Circulation Experiment (WOCE) work
6. the R/V Ross (the British Antarctic research vessel) was now operational
7. British Institutions Reflection Profiling Syndicate (BIRPS) was funded for 4 years and would be evolving from a shore-based into a marine-based study (Timor/Banda Sea profiles were done recently with BMR).

g) United States

1. Renewals
Heinrichs reviewed the timeline of renewal of international partners (Appendix 3.0); the UK was the only signed partner. He noted BCOM would need to have closure on MOU status, by March, and he would press to have the other MOUs agreed upon and signed by then. NSF was near to signing with Germany, Japan (would sign in April due to fiscal year differences), France (January fiscal year) and ECOD (possibly in the spring). Unfortunately, the Can/Aus consortium still had large problems to overcome before they could sign, if they would be able to sign at all.

2. Budget

Heinrichs reported that the 1993 NSF-ODP budget was not known as yet. The ODP budget total was 35.4 M if funding stays level. He then presented the 1993 field programs supported by NSF-ODP funds (Appendix 3.1). In addition, he described several other scientific activities related to ODP projects that NSF-ODP funds would support in 1993 (Appendix 3.2).

Dorman asked if NSF had heard anything from the Russians? Heinrichs regretted that he had only limited communications with the Russians. But in any case, NSF would not be able to subsidize their membership. The present Russian government was too chaotic and did not have any money to fund an ODP membership. Heinrichs did know that Nikita Bogdanov was still trying to get a Russian drillship operational.

3. USSAC Program

Pyle reported on USSAC activities planned for 1993, including a distinguished lecturer series (Appendix 3.3), site survey augmentation and workshops/symposia supported in 1992 — 1993 (Appendices 3.4 - 3.5). He was particularly proud of the JOI/USSAC summer research program. It had been very successful and would be repeated in 1993 (Appendix 3.6).

2. ODP Council Report

Heinrichs reported on three issues addressed at the last ODP Council meeting:

a) Technical and Support Staff Internationalization

Heinrichs noted the ODP Council concern on the issue of technical and support staff becoming more internationalized. He indicated that the contractors must implement the internationalization through their hiring practices; the Council could not direct US governmental hiring practices but there were no formal obstacles to hiring foreign nationals into the program.

b) Russian Participation

Heinrichs indicated that there was discussion on facilitating Russian participation in ODP through the collection of additional shares from the other members. The conclusion was that there was sympathy for the Russian situation but no financial commitments could be made for implementing this idea.

c) MOUs

The final issue that had concerned the ODP Council was the early and timely signing of MOUs.

3. Program Management Reports (Current Operations)

a) JOI

1. Management Items

Pyle reviewed management items that had been addressed at JOI since the last EXCOM report (Appendices 4.0 - 4.1). He noted that the bidding processes that EXCOM had requested (JOIDES Office & Wireline Logging) were done, or nearly so. He added that the review of the advisory structure was underway, while the science reviews had already been completed—and deemed successful; the PCOM objectives for DCS and computing were actively being worked on by JOI.

2. Advisory Structure Review Committee

Pyle then reviewed in more detail the composition, activities and timetable of the Advisory Structure Review Committee (ASRC); their final report would be due to EXCOM in June 1993 (Appendix 4.2).

b) Science Operator Report, TAMU

1. Science Operations

Baldauf presented summaries of scientific results for recent drilling legs (144 - 147) and the status of Initial Reports and Proceedings volumes publication (Appendices 15.0 - 15.19). Rabinowitz wanted to point out to EXCOM that the planned thirty-page increase in the volume size would increase the production cost to the publications budget by 200 K/year and reminded everyone that this cost needed to be considered in future budgets. Dorman wanted to know if digitization of data would be incorporated to reduce publication costs. Baldauf replied that CD-ROM would be incorporated in the near future.
2. New Information Services Group

Baldauf presented the administrative structure of the new Information Services group (Appendix 5.20), the former Database group had been combined with the Computer group (science services), to form this new group. Rabinowtiz emphasized that the structure of this new group was independent of the RFP for a new computing system (Appendix 5.21).

3. New Core Repository Facilities

Rabinowtiz gave an overview of the current repository situation and the problem that TAMU was mandated by EXCOM to review. He announced that LDEO had indicated to TAMU that it would be able to house the core for the next five years in present space with no additional cost to the program (outside of operations costs) so TAMU had recommended to JOI that the repository remain in LDEO.

Rabinowtiz then presented his cost analysis for opening a new repository to store new core (Appendix 5.22). The additional cost of a new repository would be about 100 K/year in salaries and 20-30 K/year for additional miscellaneous costs. The total cost to ODP would be 120-130 K/year — assuming free leasing and refrigeration. TAMU estimated that there would also be an additional one-time set-up cost of 200-300K required for opening a new repository. If the movement of old cores and equipment to this new repository was to be included, it would require shipping costs of approximately 330 K. But, Rabinowtiz added, moving the old cores and equipment would also reduce the one-time start-up costs to 100-150 K, for a total one-time cost of 430-480 K.

Since this original TAMU cost analysis was done, Rabinowtiz noted that LDEO had submitted another bid for the East Coast repository with an 80K/year increase in yearly operational cost (this figure included the 40% increase in space for new ODP cores. EXCOM discussed the present costs of operation at the East Coast repository.

Beiersdorff brought the discussion back to the lack of a formal bidding process in this cost analysis; as a result of the informal process used, the numbers that Rabinowtiz had presented were not from the foreign partners and may not have been very accurate. Rabinowtiz reiterated that his figures assumed that any country hosting a repository would have to cover all the costs for the repository; the numbers he had presented were add-on costs for any new repository facility.

EXCOM discussed the assumptions of the TAMU cost analysis and the potential willingness of another country or institution to subsidize the entire costs of the program (one-time and add-on included) in order to get the repository. Beiersdorf questioned whether or not TAMU had actually communicated with the interested groups in Germany; there was very great interest in hosting a new repository at Bremen and at GEOMAR. Rabinowtiz indicated that they had not.

Pyle reviewed the issue from JOI's perspective, EXCOM's request for TAMU to recommend the least-cost solution was precipitated by a perceived crisis of storage at LDEO based on statements made at the June 1992 EXCOM meeting. He felt that the situation was such that a commitment from LDEO was all that was really required to achieve the least-cost solution and the discussion could continue but it was not necessary; Pyle wanted to finalize a decision at this meeting.

Kent clarified that originally LDEO was looking at an addition of space to accommodate an additional 10 years of core storage in LDEO, but this would not have been possible without major construction. The present LDEO thinking was directed toward a 5 year window and core storage for this period of time could be done at LDEO with a smaller amount of capital cost required for remodeling the space to suitability; LDEO was ready to commit the funds to develop the storage facilities necessary for the period 1993-98.

Lancelot made the point that the German problem was that they did not feel they had access to the bidding process. There was a real issue here and it needed to be recognized and dealt with better at the EXCOM level. Raleigh brought up the scientific issues that would be raised in the splitting of repositories for Atlantic cores and the resulting problem of uniform access. In his opinion, the combined scientific and financial drawbacks would not justify discussing the issue any further since there were no financial or scientific justifications to create another repository.

Kent wanted to know if LDEO should proceed with their own capital investment and remodeling; they would like guidance on the time frame that needs to be accommodated.

Briden requested clarification on what the real decision was, a quick fix now and then a revisit of the issue after five years? He felt that if core storage beyond 1998 involved new building at LDEO, the process could be opened up for bidding at that stage. Briden also objected to the assumptions made about the costs of an international repository. Having made the inquiries it was not very diplomatic to rule out the possibilities by arbitrary assumptions. Rabinowtiz argued that he was only informing EXCOM on the costs. It was ultimately EXCOM's decision.
Lewis explained the PCOM/Thematic Panel position on multiple repositories; there was support for multiple institutions but very strong opposition to shipping existing cores to a new facility.

Beiersdorf reiterated his strong support for approaching interested groups with Rabinowitz's figures and letting them comment or "bid" informally on what they could provide. Discussion continued over the process that was employed by TAMU to examine the costs of this issue. Falvey was concerned that initially LDEO had not made it clear that there would be an 80 K/year increase in costs. He felt that if TAMU was now going to negotiate with LDEO it should also have negotiated with the Germans.

Rosendahl wanted to know if there was any time conflict for LDEO if EXCOM did a pre-RFP process in time for the June EXCOM meeting? Kent thought that the arrival of the first Atlantic cores would be in June and that LDEO must begin renovations immediately to accommodate them. LDEO needed a decision very soon. Kent also wanted to clarify that the commitment LDEO made about providing more storage space at no additional cost to ODP was in regards to capital costs, not operational costs. The 80 K increase in operating costs was prorated to incorporate the additional space in the lease arrangement.

Raleigh stressed that the actual costs were not known for either LDEO or overseas partners and it would be difficult to make a decision based on the available numbers. Nowell concurred, noting that the process by which the numbers were arrived at was not very structured. Leinen was concerned about the judgmental nature of the process. She noted that it was not based on adequate budgetary information and there was also a lack of technical information on how a new repository would impact scientific progress.

Lewis explained that PCOM had polled all of its advisory panels and received no strong indication for or against additional repositories; therefore, it was left to EXCOM. Raleigh repeated that without the proper financial information, which was the only real reason for moving it, EXCOM could not make a decision at this time; he recommended getting more financial information on the issue but felt that without an overriding financial reason LDEO should continue to host the repository. Consensus was reached that there should be action taken to find out the real financial costs for making this decision and further discussion concerned how this should best be done.

The issue tabled until Thursday for action at that time.

4. ODP Exhibits

Rabinowitz was pleased to announce that a TAMU-prepared ODP exhibit would be opening in the Pear Aquarium in St. Petersburg, Florida on February 10, 1993 (Appendix 5.23).

c) Wireline Logging Services Report, LDEO

1) Logging Results on Recent Legs: 144-147

Goldberg reported that Legs 144 - 146 had experienced very difficult drilling and logging conditions. He outlined the specific logging programs carried out on each leg and the significant scientific results that had been determined from each to date (Appendices 6.0 - 6.2).

2) Logging Plans on Future Legs

Goldberg presented the planned logging programs for upcoming Legs 148 - 150 (Appendix 6.3).

3) Downhole Systems Development Summary

The status of the downhole systems development programs being done for ODP was reviewed, there were currently four programs being supervised by ODP-LDEO (Appendix 6.4).

4) Other Operational Developments

Other operational developments at ODP-LDEO were briefly reviewed (Appendix 6.5)

a) CD-ROM

Goldberg presented several FMS images to EXCOM and explained that, in order for these images to be useful, they must be available in digital CD-ROM format. Recent jumps in logging data requests to LDEO were due to the increased use of FMS and on-line data in the program. ODP was moving forward toward CD-ROM data distribution. Leg 143 data was in production and Leg 144 was in preparation, both on CD-ROM.

b) Other

Goldberg reported on the successful logging school held in Japan during July 1992 and briefly went through the present staffing situation in the LDEO logging group.

d) PCOM Report

1. PCOM Meetings

Lewis reviewed the PCOM activities since the last June EXCOM meeting. PCOM had met twice, in August in Corner Brook, Newfoundland and in December in Bermuda. The primary activities were determining the contents of the FY94 Atlantic/E. Pacific Prospectus in August and finalizing the FY94
Science Plan in December. Annual reports from all of the advisory structure panels were presented to PCOM in December.

2. Use of Existing Boreholes Policy

Lewis reported that at the August PCOM meeting it was decided that the 1987 policy for use of existing boreholes, which was established by EXCOM, was in need of revision. PCOM requested EXCOM to amend this policy such that parties desiring to use these holes seek permission from PCOM, rather than EXCOM. This change was recommended so that a specific office would be responsible for approval for use of existing boreholes.

3. Panel Activities

Annual reports from all of the advisory structure panels were presented to PCOM in December. Lewis briefly summarized the activities of each of the panels.

a. Panel Chairs (PANCH)

Lewis presented the PANCH recommendations regarding the future of DCS development (Appendix 7.0); the PANCH concluded that if the next sea trial did not recover core, the development of DCS should stop. Dorman agreed with this conclusion, he also felt that any plan for DCS needed to include a contingency in case DCS failed the land test. He wanted to know more specifically how long the program would continue to spend money on this development? Beiersdorf asked for clarification on the siting of the land test and the lithologies being drilled for testing. Lewis clarified that the secondary heave compensation system was the key element of the land test, not the lithology.

Lewis also highlighted another issue raised by the PANCH on publications of drilling results (Appendix 7.1). PANCH felt that, due to the thematic science being done, results volumes should also be published concerning the themes the program was addressing; Lewis indicated that there would be continuing discussion on this item at the PCOM level.

b. IHP

Lewis explained that the recent RFP for an integrated shipboard computer system was driven by IHP recommendations and the EXCOM motion to have the operator integrate shipboard computer operations (Appendix 7.2). The RFP had been issued, with the help of IHP and an RFP Evaluation Committee. Lewis outlined the four stages of the RFP. The system was seen as a UNIX-based system, with Internet access. Both IHP and PCOM were working with TAMU on this RFP.

There was discussion over a general concern for having the implementation timetable being weighted in the proposal evaluation process to give advantage to quick implementation. Lancelot reminded EXCOM that the two-year time frame was in part constrained by the budget that was available; it might be necessary to have it implemented over two years in order for ODP to have the money to cover the costs.

c. TEDCOM

Lewis reviewed the recent actions and advice that TEDCOM had provided on current technical development issues, including DCS heave compensation. Most importantly, an RFQ had been let to research development of the deep drilling capabilities on the JOIDES Resolution.

d. DMP

Lewis reviewed the EXCOM Action Item assigned to DMP concerning the development of third-party tools. He related that DMP was developing guidelines for the development and use of third-party tools. Once these guidelines were in place it would be possible to identify appropriate candidates for commingled funding; DMP felt that only tools that were appropriate and mature should be supported.

e. SMP

Lewis listed the current SMP priorities for shipboard scientific equipment and tools.

f. PPSP

Lewis presented the concepts and plans for the Leg 150 NJ-MAT program. He then explained the problems that developed due to the PPSP review of the shallow water drilling hazards. Several of the shallow water Leg 150 sites were not approved by PPSP for drilling. This problem arose due to a combination of site survey data limitations and the hesitance of PPSP to approve shallow water sites. Some PPSP members had said they would never approve sites in less than 100 m water; others were willing to approve them with better site survey data.

Lewis reported that this action precipitated a "crisis" and PCOM was required to take action to determine the future of the leg. At the December PCOM meeting, it was decided to accept an alternate NJ-MAT proposal that substituted deeper water slope sites for the shallow water sites. Another result of the Leg 150 approval process was that PCOM formed a Working Group to address the issue of shallow
water drilling with the JOIDES Resolution. The group includes industry and ODP members and will formulate guidelines for dealing with the safety problems; the group’s first meeting would be in February.

Rosendahl asked why the planning process failed on this leg? Lewis explained that the timetable for the safety review process and severe shortcomings of site survey data led to the disallowing of the sites. Rosendahl was concerned that the panel was being very strict if it would never allow drilling in less than 100 m of water.

Kent requested that Lewis briefly review what the PPSP process and timetable was. Lewis reviewed the current process for safety review, explaining the roles of both PPSP and TAMU’s safety panel. A group discussion followed on how the PPSP determines sites are safe.

4. 1994 Program Plan Reports

a) NSF Budget Planning Letter

Heinrichs reviewed the actual FY91 & FY92 budgets, the estimated FY93 and projected FY94 budget (Appendices 8.0 - 8.8). He indicated that a comparison to the LRP showed funding was behind the LRP projections. He then reviewed various budget options with different combinations of six or seven international partners; however, without Canada, the international funds would drop to five partners — which would result in a very difficult budget scenario.

Heinrichs reviewed the outstanding budget-related problems in the international partnerships as well as in the NSF structure. The new Clinton administration in Washington had yet to construct their new budget; they wanted it done by March 1, 1993. NSF had given JOI an interim budget planning target of 44.9 M, with a 41.9 M lower limit, for program plan development. Updated target budgets would be provided prior to BCOM in March. Pyle wanted more NSF instruction on how to approach budget planning for FY94. Heinrichs felt that the higher number (44.9M) was realistic for planning if contingencies were developed for reductions if necessary. Heinrichs compared the LRP budget projections and actual expenditures since 1992 through 1994. He felt that there was close agreement in most budget categories; the gaps were in the Special Operating Expenses (SOE) and developmental areas which had taken the loss because of the loss of one partner (Russia).

b) 1994 Budget Planning

Pyle also compared the LRP projections for projected spending in FY94 (Appendix 9). There were shortfalls with six partners, greater shortfalls with only five partners. Pyle also stressed that the innovative aspects of the program were going to suffer the most with these budget projections for FY94. Dorman asked about the DCS issue. Who would make the decision regarding money spent on expensive issues like this. Would it be BCOM? Pyle reiterated that it was PCOM who prioritized the spending on these developmental issues. Kent asked for clarification on what the actual cost for DCS would be. Specifically he wanted to know if the leg expenses would be included in the cost of DCS development. Discussion followed on the opinions as to the actual accounting of costs for DCS and if it included the shiptime or not; no consensus was reached.

c) 1994 PCOM Science Plan

Lewis went over the proposal review and planning processes that PCOM used for deriving the FY94 Science Plan (Appendix 10). He then presented brief reviews of the objectives of each of the new drilling programs that were approved by PCOM in December:

1. MARK
2. Ceara Rise
3. Amazon Fan
4. Barbados
5. Vema - DCS

The presentation of the Vema - DCS engineering leg was followed by a group discussion of the DCS leg objectives and what contingency plans had been made if the land or sea testing results were a failure. Lewis indicated that these details have not been worked out. Discussion then moved on to what would happen if this test was not a full enough test of the system’s capabilities. Lewis stressed that the PCOM philosophy was to maximize the success of DCS but that it must be done one step at a time. He explained that this leg was designed with the primary objective of testing the system’s secondary heave compensation. The leg was specifically scheduled late in FY94 to give enough lead time so that the leg could be replaced with TAG if the land test of the secondary heave system failed.
6. Trans-Atlantic Geotraverse (TAG) Hydrothermal System

Lewis explained that this drilling proposal was scheduled late in the program to give the RIDGE group the maximum amount of time to instrument the hydrothermal system in the summer of 94.

d) Discussion

General discussion followed on this review of the 1994 Science Plan. Briden commented that overall, he was very nervous about the FY94 Science Program because he claimed there was an absence of fallbacks on two out of six programs. Specifically he worried about Leg 152 because of the weather in Greenland. Additionally, he stated that there were no scientific fallbacks for the Leg 157 DCS test if DCS fails. He also was not in favor of the combination of testing retractable bits with DCS testing. Kent was optimistic that the technical objectives of DCS were important and that the DCS could become a proven tool, even if it still had limitations. Lancelot thought the approach was reasonable given the history of the program but wanted the DCS sampling/drilling program better defined and no distractions (i.e., retractable bits).

5. Long Range Planning Reports

a) Four-Year Plan

Lewis previewed the programs from FY93 through FY94 with an advance look through FY98. The question of commitment to multileg Detailed-Planning Group (DPG) programs was discussed. FY95 was clearly an Atlantic program but FY96 would be guided by the Spring Global Rankings of proposals that were now in the system. Lewis pointed out that in terms of long range planning there would be a lot going on in PCOM's four year planning process; this was very different than the yearly budget planning.

Lancelot asked how PCOM planned to fill out the post-FY96 program. Would PCOM be passive or proactive? He felt that planning for this must start now. Lewis indicated that PCOM would be proactive but needed flexibility enough to allow for thematic panel reactions to good proposals that still might come in.

Heinrichs warned against seeing 1998 as the end of the program and urged EXCOM to look ahead and do planning that would take account of an evolution of the program into the next phase (which he admitted was still unknown as of FY93). Lewis agreed, stressing that PCOM needed a roadmap for future planning.

b) Future Platforms

Lewis presented possibilities for future opportunities for ODP to utilize alternate platforms in shallow water drilling and deep crustal drilling (Appendix 11.0). He then reviewed the performance requirements for such alternate platforms (Appendix 11.1). Lewis suggested that TEDCOM and PCOM review the opportunities for both of the deep drilling alternatives — the recently-approved TEDCOM RFQ and the Japanese vessel proposal. The issue of shallow water drilling would be answered by the recently-organized Shallow Water Working Group.

c) The Scope of ODP

Lewis perceived that there existed two views of ODP, one as a tool-driven program, the other as a science-driven program (Appendix 11.2). He explained how each view requires different planning approaches and discussed the ramifications of each view for PCOM's planning process. If the first view was taken, the planning philosophy should be that ODP does not use commingled funds for programs that can't use the tool (i.e., JOIDES Resolution). However, if the second view was taken, then ODP must plan to fund alternative platforms as appropriate in order to fulfill scientific programs that cannot be completed solely with the JOIDES Resolution.

Discussion followed on the disadvantages of funding alternate platforms given the lack of core handling facilities that would not exist on any other ship. There was general concern that the issue may not be only one of budgets but there could also be problems of getting commitment to devote the time necessary in the JOIDES Resolution's schedule to drill difficult holes with these techniques. The riser issue was discussed and there was agreement that the costs for equipping the JOIDES Resolution with this technology needed to be carefully evaluated. Lewis assured EXCOM that the Shallow Water Working Group was going to address this cost issue.

A request from EXCOM was made to Hirose to explain in more detail the Japanese deep drilling vessel program. Hirose read more from his report outlining the performance capabilities of the ship (distributed to EXCOM as a handout, see Appendix 2). Heinrichs asked what the completion timeline for this new vessel was? Hirose indicated that it was projected to be completed around the year 2000.

Briden asked Hirose to clarify who exactly had been invited to the March meeting in Tokyo and what the Japanese envisaged as the ODP role in their planning process. Discussion followed on who the invited
persons would represent, ODP or their institutional/national science programs. Heinrichs emphasized that ODP could not provide capital facilities to programs like this, the money must come from national funding agencies. Lancelot felt Japan could invite ODP to participate in an advisory role, possibly in this workshop in March, and the ODP advice could then be taken to the appropriate national funding agencies of interested countries. Beiersdorf commented that this situation was similar to German KTB planning. He was concerned about drilling in other country's waters and the EEZ issues; these issues needed to be addressed in order to sell this to national funding agencies. Lewis pointed out that ODP was itself planning to spend money on deep drilling (beginning with the TEDCOM RFQ), PCOM would need to know what all the options were in this situation in order to do effective long range planning.

Nowell ended the session by summarizing the outstanding issues to be dealt with on Thursday and asking members to think about these issues for further discussion and action.

End of Day

Thursday, January 28, 1993

An hour of informal discussion on the status of the Canada membership crisis preceded the formal EXCOM meeting.

ITEM 543: OLD BUSINESS

1. JOIDES Office RFP

Pyle reviewed the RFP process for the JOIDES Office and announced that the UK bid for the JOIDES Office had been selected as the winner (Appendix 12). There were several issues that would be affected by this change to an overseas location, the first concerned the issue of national representation for the UK at PCOM meetings. Briden explained the practical requirements for an observer from the institution of the Chair (PCOM) to be present at all PCOM meetings. He indicated that the UK expected that the PCOM alternate would be attending all the PCOM meetings as an observer; the EXCOM alternate would also attend the EXCOM meetings. Such observers would not have voting privileges. He emphasized the reason for an alternate to attend was to ensure continuity/corporate memory should either PCOM or EXCOM chair be unable to attend part or all of a specific meeting. Briden did not think it raised any procedural problems and Pyle conceded that it was not a fiscal problem because the UK would be paying for the alternate's expenses.

Maxwell voiced concern about the procedures used for EXCOM-mandated RFPs, namely the JOIDES Office and Wireline Logging. Specifically who made the decisions? Maxwell stated that JOI had decided on where the JOIDES Office would go and, from the June minutes, it was clear that EXCOM wanted to select the bid. Pyle clarified that it was the contractual obligation of JOI to select the bids since JOI had put out the RFP. Maxwell requested that EXCOM be involved in the discussion of these issues before decisions were made, not just being able to discuss the decision once it was made—when they were not even required to approve it. Heinrichs agreed that there were points on both sides, but that JOI was correct in making the final decision in the selection process of bids from an RFP. Heinrichs thought that the problem was that EXCOM did not have involvement in the selection process as was indicated in the original motion made by EXCOM.

Beiersdorf asked about the original JOIDES agreement on how member institutions would operate and wanted to know how it was that a non-JOIDES institution could run the JOIDES Office? He cited the BGR and GEOMAR institutions as potential places that would also be interested in hosting the JOIDES Office. He specifically questioned this issue in reaction to the two bids put in by the Canadians. Pyle answered that this issue had not been questioned during the review process. Heinrichs explained that Canada's bids were submitted to change the EXCOM/PCOM memberships, there would still have been only one institution representing Canada, it wasn't a two-institution membership option for them. Pyle agreed, stating that Canada had in essence put the decision of Canadian national representation into JOI's hands. Falvey wanted to clarify for EXCOM that Australia was very surprised that the Canadians put in two bids. Australia was not consulted on this matter.

Lewis offered the observation, as a reviewer of the proposals, that the process could have been much improved and suggested that it should have been done by choosing randomly or setting up a rotation. He was sure that the RFP was not the best method and that the issue of future US locations was not addressed. Lancelot felt that the process was distorted during its implementation. He asserted that the intent was to let the JOIDES Office rotate between international partners, the intent was not to let JOI
choose national representation—like Canada had done. He suggested that the MOUs should be amended to fix this problem so that JOI would not be in the position of choosing between different institutions within a member country. Maxwell asserted that this process was not what he expected, JOI's formal bidding competition did not achieve the result EXCOM had intended, i.e. of EXCOM making the decision after reviewing the bids.

Nowell drew the discussion to a close by suggesting that EXCOM review this process when the office was due to rotate back to the US.

Motion - EXCOM endorses the selection, by JOI Inc., of the UK JOIDES member to host the JOIDES Office for FY95 - FY96.

Dorman proposed, Falvey seconded; vote: 15 in favor, 1 abstention.

2. Wireline Logging RFP

Pyle gave an overview of the status of the Wireline Logging RFP (Appendix 13). There had been two submissions—one from LDEO and one from the University of Utah. He then went over the composition of the review committee for the bids and presented the planned procedure and timetable for the evaluation of bids and selection of the contractor.

EXCOM returned to a discussion of the fact that there was no direct role for EXCOM in the award of the logging contract, just as in the JOIDES Office selection. Pyle agreed but stressed that once it goes to a formal RFP process JOI was contractually obligated to select the winner. NSF had contracted JOI to be the management contractor for the program and JOIDES can only specify the parameters of the competition. JOI implements these specifications through a contract process. Lancelot pointed out that there was no international representation in this process because JOI was answerable only to JOIBOG. No international representation was present in the system since international members were only represented by JOIDES; therefore, without JOIDES input there was no avenue for international input or objections. He wanted to see JOIDES input on the RFP review committee so that there would be greater representation of international interests. Pyle agreed that more could be done in this manner and solicited EXCOM input on members of the review committee. Briden requested the JOI include the JOIBOG approval in the procedure for selecting the winning bid. He felt that the international partners would trust JOIBOG to act in the best interests of the international partners and would be more comfortable if formal approval of JOIBOG was included in JOI's timetable. He pointed out that EXCOM had discussed the internationalization of JOI, the partners had agreed in June 1992 that they did not wish representation on JOIBOG.

Pyle added JOIBOG approval after the "JOI Consults with EXCOM Chair" step in the process. Nowell asked that any EXCOM input on the membership of the Wireline Logging RFP review committee be directed to JOI.

3. Public Relations Strategy

Pyle reviewed what JOI had done, at EXCOM's request, to arrive at a public relations strategy for ODP (Appendix 14). So far, through the use of a consultant, the selection of a unifying theme and development of a PR strategy had been completed. Pyle outlined the program and stressed that JOI wanted EXCOM's direction on implementing the strategy because further development of the campaign would cost money. Specifically JOI needed to know if it should be included in the program plan for FY94. Heinrichs made the point that PR was an area where national review of ODP had pointed out that ODP needed more improvement. Falvey agreed that it was imperative for an organization of this size to have a marketing department. BMR had such a department and it was quite successful. He supported this approach and urged formation of a marketing and public relations steering group. Lewis noted that at PANCH meeting this was discussed and a perceived weakness of public relations campaigns in general was that the scientific results were not well integrated into the process. PANCH preferred to see scientific results go out to the scientific community as well as to the general public and felt that this PR campaign did not address this.

Nowell asked what the costs were. Pyle said that it was 100-120 K initially, but that did not get any activities done, it just initiated a staff position. Falvey agreed with this budget estimate and its associated problems, explaining that at BMR there was more than several hundred thousand dollars a year involved. However, he felt that the general public was paying for this program and felt it was important that the program communicate with them. Beiersdorf described some of the German efforts for media
involvement but what he thought was really needed was live science, as in broadcasting the results of the drilling directly from the ship as it happened.

Nowell asked that EXCOM endorse the proposal by JOI and request that they put it in the FY94 program plan, leaving the decision for the exact funding level for BCOM.

Consensus - EXCOM endorses the Public Relations Strategy proposal presented by JOI Inc. and instructs JOI Inc. to incorporate it into the FY94 Program Plan, the decision for the exact funding level will be left for BCOM consideration in March.

ITEM 544. NEW BUSINESS

1. **1994 Management Issues**
 a) **BCOM Issues and Schedule**

 Nowell reported that BCOM would be meeting in March. He expressed concern that one of the international members on BCOM was Robin Riddihough of Canada. Given that Canada had notified NSF of their intent to withdraw from ODP, he felt that there might be procedural difficulties for Riddihough at this meeting. Nowell then asked for suggestions on how best to deal with the problem.

 Heinrichs felt it was imperative that all BCOM members have the expectation that their country will be involved in the future of the program. EXCOM discussed the uncertainty of Canada's status and the membership of BCOM. Maxwell requested that EXCOM name another international partner representative to be a member of BCOM. Falvey wanted to wait until the Canadian withdrawal was official before asking Riddihough to resign. Rosendahl asked if there was an official Can/Aus position yet? Falvey could only clarify that Riddihough was on BCOM as the Can/Aus EXCOM alternate and declined to make further comment.

 Discussion continued as to who should replace Riddihough and what the appropriate action was at this time. Lancelot and Taira were considered and each would be approached by the EXCOM Chair to determine who could fulfill the BCOM responsibility in the event Riddihough steps down.

 2. **Canadian ODP Participation**

 EXCOM returned to a brief discussion of the status and future of Canadian participation in ODP. There was no new information on the status of the situation, but EXCOM wished to communicate to Canada their concern for Canada's future involvement.

 Motion - Recognizing the value of the scientific contributions Canada has made and continues to make the Ocean Drilling Program, the JOIDES Executive Committee urges Canada to make every effort to maintain its current participation.

 Rosendahl proposed, Leinen seconded; vote: 14 in favor, 1 abstention, 1 absent

3. **Use of Existing Boreholes**

 At the request of PCOM, EXCOM amended their previous 1987 motion regarding the use of existing DSDP and ODP boreholes. Interested parties would now be requested to contact and seek endorsement from PCOM, through the JOIDES Office, prior to using DSDP or ODP holes.

 Motion - The JOIDES Executive Committee actively encourages the use of the Deep Sea Drilling Project and Ocean Drilling Program boreholes for scientific purposes by both the D/V JOIDES Resolution and independent vessels through wireline re-entry. The drilling program has historically sought to maintain a catalog of hole conditions for those sites with installed re-entry equipment in order to facilitate scientific planning. In order to maintain such a list and to protect JOIDES interests in future use of these holes, the JOIDES Executive Committee requests that parties desiring to use any of these holes seek endorsement of the Planning Committee, through the JOIDES Office, prior to their use. In addition, a written report to the Science Operator on the state of the holes used is requested following the conduct of these experiments. We trust that all member institutions and governments will adhere to this agreement and will ensure that those announcements and reports are made in a timely fashion.

 Maxwell proposed, Duce seconded; vote: 15 in favor, 1 absent
4. Internationalization of the ODP Program Revisited

Nowell returned to the issue of the internationalization of the core repository facility and after a brief discussion offered the following motion for EXCOM consideration:

Motion - Given that EXCOM recommended that ODP/TAMU should retain responsibility for curation repositories through 1998, and, given that the program requires not only cost minimization but also scientific, logistic and international considerations, EXCOM requests ODP/TAMU:

A) curate cores as appropriate for upcoming legs for an interim period until:
B) quotes from any interested JOIDES members have been requested and received to provide curation and repository facilities. Criteria for evaluation will include overall operating cost minimization, performance, total cost including capital construction, and long-term scientific community benefit to the program.

This request for quotes for curation and storage of new core will be promulgated by ODP/TAMU no later than 1 March 1993. Recommendations on the issue will be made by EXCOM in June 1993, based on evaluation by a panel of 3 EXCOM members in June 1993.

Furthermore, EXCOM requests all interested members to consider capital construction for repositories in the period 1998 onwards and will issue detailed procedures no later than June 1995.

Nowell proposed, Falvey seconded.

EXCOM discussed the wording of the motion and how best to select the members of the review committee.

Kent wanted EXCOM to be aware that in December he believed LDEO had responded to a request for a bid for operations with the expanded storage space and, at that time, LDEO felt that the issue was progressing along the lines of the recommendations made by JOI in their cover letter to LDEO. He wanted to know why EXCOM was revisiting the issue that had been settled in accordance with their June motion and why this process would be repeated.

Beiersdorf felt there was another option that EXCOM could consider, instead of four repositories there could be three if there was consolidation of all of the Atlantic cores in Germany. Raleigh reminded EXCOM that PCOM had recommended that core movement not be done. Lewis objected. PCOM's specific recommendation was that core should not be moved unless it was done properly and the problem with that was that it would be very expensive.

Beiersdorf observed that if the repository remains at LDEO, none of the recommendations of the Dorman Committee were being enacted. This was an identified area of potential internationalization. The serious efforts toward internationalization were not being made here. The figures have not been seen yet from all interested parties. There was no evidence that it had to be more expensive.

Dorman endorsed this motion. He saw this as an opportunity for internationalization. The current facilities were in need of enlargement and there had been an informal EXCOM request for letters of intent. Unfortunately, this process had not been completed to the satisfaction of the German partner so he concluded by calling for a vote to more formally continue the internationalization process.

Motion was then brought to a vote: 13 in favor. 1 opposed. 1 abstention. 1 absent

5. JOIDES Panel Membership Issues

a) Wording Changes to the Operating Procedures

Nowell will review the JOIDES Operating Procedures and identify wording changes that will be required to reflect the upcoming changes in the JOIDES Office and, if necessary, in Wireline Logging Services; he indicated that he would bring up the issue again in June, along with suggested changes. Dorman pointed out that the names of two JOIDES institutions, LDEO and Oregon, would also need to be changed.

b) Panel Chairs and National Memberships

Nowell asked for clarification on the issue of international partners claiming that they were entitled to have an additional national representative appointed to an advisory panel when their primary representative becomes panel chair.

Beiersdorf did not feel this was a good policy. He felt that the panel members were representing science on the panels and not countries. Heinrichs cited the MOUs do state that a partner country was entitled to membership on the panels but that putting an additional member on as an official
representative when another member becomes chair was a bad precedent. Beiersdorf agreed and was afraid that particular national issues could be raised on the panels and this would not be good. Lewis explained that one reason he asked this issue to be raised at EXCOM was that this has already been done by several panels and PCOM wants guidance in how to deal with the issue. Briden emphasized that it was how the chair behaved and conducted themselves as chair and also as a national member of the committee, particularly on issues that require chairs to vote. Lewis felt that it was a very flexible system at present because, as experts, a country could have more than one member on a panel; it was the entitlement issue that needed clarification.

Consensus - It was agreed by EXCOM that countries were not entitled to an additional panel member when their representative member became chair of that panel.

6. New Members

Pyle presented Baker's report on possible new ODP memberships (Appendix 15). He stressed that the concerns over new members that EXCOM had in June had been greatly complicated by the Canadian problems. The US State Department had been approached for securing Russian funding but this had been unsuccessful. Similar reaction had been received from the other partners. The private Soros Foundation had also been approached but with no result as yet. Other potential partners that JOI had considered were: Asia, Africa, IOC/World Bank and an expanded ESF. Pyle and Lewis were going to New Zealand next week to visit and explore their interest in ODP. Lewis has gone to South Africa on a similar fact-finding trip in October 1992. The question Pyle had for EXCOM was what should JOI do at this point?

Falvey was in favor of a coordinated effort. Depending on what Canada does, he said that the Australian National Committee had authorized action to be taken on finding partners for Australia in Asia. Falvey requested that JOI coordinate with Australia on any approaches they might make to Asian countries concerning ODP membership. Pyle assured Falvey that JOI would cooperate fully in this endeavor.

A discussion followed about the philosophy of approaching new members while existing members were not yet signed and settled. Maxwell felt that the strategy should be different, not centered on attracting new members but on strengthening existing contributions to the program from member countries. Briden disagreed, he was concerned that the existing membership was threatened and this action was necessary to fill the gaps. To implement the process of finding new members, Briden suggested that a three-person group be formed to carry this task forward. He nominated the JOI liaison (Baker or equivalent), Falvey, and Sartori for the task. The composition of this group would guarantee the coordination for the Can/Aus problem as well as pursuit of the ESF rumors of additional memberships. Briden speculated that the outcome could be a revised Can/Aus consortium of .85 of a full membership and an ESF consortium contributing 1.15 of a membership that could possibly be restructured into two full memberships, he wanted to see what could happen.

Leinen was concerned about the longer term issues of membership at this stage in the program. She felt it was important to have a long-term strategy for membership issues; it should be more proactive in approaching countries, from a scientific point of view as well as a political one. She urged EXCOM to rethink its strategy and solicit support from other scientific groups, like JGOFS and WOCE, to develop scientific support in other countries.

Maronde brought up the issue of membership subsidies for the Russians. He wanted to know what the US position was; if Germany had some indication that NSF would spend money to support Russian membership, there might also be German support to fund this also. Heinrichs answered that after the ODP Council meeting in June a letter went out to all member countries asking for financial support for Russian membership. The UK, Japan, Canada and ESF all indicated that no international money would be available. The NSF could not fund a Russian membership in ODP, the budget was structured such that funds were available only for support of science. However, the money could come from an assistance or aid budget, but the US State Department had not settled on what it would fund in aid to the former USSR. This issue had not been decided as of the end of the Bush administration and NSF had no indication what the new Clinton administration would do with this issue.

Rosendahl asked about the possibilities of a South American consortium? Pyle only knew of Jamie Austin's efforts with the Tinker Foundation. Rosendahl stressed that Petrobras had a large and skilled population of South American geologists and JOI should consider possibilities of a consortium involving Brazil, Argentina, Chile and other South American countries with marine research programs.
Dorman felt strongly that this issue was a first-order problem. The bottom line was that it was essential for ODP to have six members. Looking toward 1998 and beyond, he wanted to see a broader set of participants become involved now so that when planning for the future of the program there would be an adequate foundation for doing so. Dorman concluded by suggesting that EXCOM take on this task and appoint an ad hoc panel to put it into motion.

Motion - EXCOM establish an ad hoc working group of four (JOI liaison - Baker, Australia - Falvey, ESF - Sartori, US member - Leinen or Rosendahl) to energize efforts to sustain and increase international partnership.

Dorman proposed, Falvey seconded; vote: 13 in favor, 1 against, 1 abstention, 1 absent.

Raleigh wanted the discussion to return to the issue of ODP’s scientific impact on the community. He was concerned that the ODP was becoming too inward-looking and did not adequately address scientific issues that were of interest to a wider scientific community; in order to insure the long term survival of the program, Raleigh asserted that there needed to be a way to direct the program to expand into scientifically broader issues. In addition, Raleigh reminded EXCOM that there would be many new issues coming up within the next five years that needed to be worked on soon; EXCOM needed a strategy for moving toward 1998 and beyond. He saw little effort to formalize the long range planning processes and proposed that there be a concerted effort at the June EXCOM meeting to formalize EXCOM’s long range science and strategy planning.

Lewis agreed, stressing that PCOM wanted some long range planning directions for the science planning process. EXCOM needed to have a strategy because it would involve budgetary considerations. PCOM wanted EXCOM to realize that if the long range strategy was for expanding the scientific goals for the program to go beyond the operation of the single drillship, the JOIDES Resolution, the budgets must also increase in the long term to allow incorporation of alternate platforms.

Discussion followed concerning the current five year commitment and the post-1998 planning, both scientific and financial. Heinrichs warned that the current MOUs do contain a small budgetary increase, but there will not be a huge increase in present funding levels in this renewal period; partners were committed to an evaluation of the post-1998 direction of ODP.

Nowell asked Raleigh if he would put some thought into formulating a report that carefully examined the issues of long range science planning and the strategies that would be necessary to carry the program successfully into the post-1998 era. Raleigh agreed to do so with help from Leinen and others and would report to EXCOM in June.

Action - Raleigh to prepare a report for long-range science plan and long-range strategy.

ITEM 545. FUTURE BUSINESS

1. Dates and Places for Future EXCOM Meetings
 A. The next EXCOM meeting will be in College Station, Texas on June 22 - 24, 1993
 B. The January meeting to be hosted by ORI, in Japan. The exact location was still undetermined, the likely dates were sometime in the last week of January, Taira will present further details on the meeting venue and dates at the June meeting.

Nowell wanted to take the opportunity to recognize Kobayashi’s many years of service to EXCOM, he would be retiring in the spring and this would be his last EXCOM meeting.

Nowell also thanked Falvey for graciously hosting the meeting and field trip.

◆ Meeting was adjourned... 12:30 PM
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACOS</td>
<td>Advisory Committee on Ocean Sciences</td>
</tr>
<tr>
<td>ABW</td>
<td>Antarctic Bottom Water</td>
</tr>
<tr>
<td>AGU</td>
<td>American Geophysical Union</td>
</tr>
<tr>
<td>AMC</td>
<td>axial magma chamber</td>
</tr>
<tr>
<td>APC</td>
<td>Advanced Piston Corer</td>
</tr>
<tr>
<td>ARC</td>
<td>Australian Research Council</td>
</tr>
<tr>
<td>ARCSS</td>
<td>Arctic System Science</td>
</tr>
<tr>
<td>ASRC</td>
<td>Advisory Structure Review Committee</td>
</tr>
<tr>
<td>ASTC</td>
<td>Association of Science and Technology Centers</td>
</tr>
<tr>
<td>BGR</td>
<td>Bundesanstalt für Geowissenschaften und Rohstoffe</td>
</tr>
<tr>
<td>BGS</td>
<td>British Geological Survey</td>
</tr>
<tr>
<td>BHA</td>
<td>bottom-hole assembly</td>
</tr>
<tr>
<td>BHTV</td>
<td>borehole televizier</td>
</tr>
<tr>
<td>BIRPS</td>
<td>British Institutions Reflection Profiling Syndicate</td>
</tr>
<tr>
<td>BMFT</td>
<td>Bundeministerium für Forschung und Technologie</td>
</tr>
<tr>
<td>BMR</td>
<td>Bureau of Mineral Resources</td>
</tr>
<tr>
<td>BRGM</td>
<td>Bureau de Recherches Géologiques et Minières</td>
</tr>
<tr>
<td>BSR</td>
<td>bottom-simulating reflector</td>
</tr>
<tr>
<td>CCG</td>
<td>Canadian Geoscience Council</td>
</tr>
<tr>
<td>CHT</td>
<td>cross-hole tomography</td>
</tr>
<tr>
<td>CORK</td>
<td>Continental Scientific Drilling Program</td>
</tr>
<tr>
<td>CSDFP</td>
<td>Computer Services Group (ODP)</td>
</tr>
<tr>
<td>CSM</td>
<td>Camborne School of Mines (UK)</td>
</tr>
<tr>
<td>CY</td>
<td>calendar year</td>
</tr>
<tr>
<td>DCB</td>
<td>diamond core barrel</td>
</tr>
<tr>
<td>DCS</td>
<td>diamond coring system</td>
</tr>
<tr>
<td>DEA</td>
<td>Drilling Engineering Association</td>
</tr>
<tr>
<td>DFG</td>
<td>Deutsche Forschungsgemeinschaft</td>
</tr>
<tr>
<td>DI-HBA</td>
<td>Drill-in bottom-hole assembly</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Energy</td>
</tr>
<tr>
<td>DP</td>
<td>dynamic positioning</td>
</tr>
<tr>
<td>DPG</td>
<td>Detailed Planning Group</td>
</tr>
<tr>
<td>DRB</td>
<td>diamond coring system retractable bit system</td>
</tr>
<tr>
<td>ECB</td>
<td>extended Core Barrel</td>
</tr>
<tr>
<td>ECOD</td>
<td>ESF Consortium for Ocean Drilling</td>
</tr>
<tr>
<td>ECR</td>
<td>East Coast Repository</td>
</tr>
<tr>
<td>EEZ</td>
<td>Exclusive Economic Zone</td>
</tr>
<tr>
<td>EMCO</td>
<td>ESF Management Committee for ODP</td>
</tr>
<tr>
<td>EIS</td>
<td>environmental impact statement</td>
</tr>
<tr>
<td>EMR</td>
<td>Department of Energy, Mines & Resources</td>
</tr>
<tr>
<td>ENSO</td>
<td>El Niño Southern Oscillation</td>
</tr>
<tr>
<td>EPR</td>
<td>East Pacific Rise</td>
</tr>
<tr>
<td>ESCO</td>
<td>ESF Scientific Committee for ODP</td>
</tr>
<tr>
<td>ESF</td>
<td>European Science Foundation</td>
</tr>
<tr>
<td>ETH</td>
<td>Eidgenössisches Technische Hochschule, (Zürich)</td>
</tr>
<tr>
<td>FARA</td>
<td>French-American Ridge Atlantic</td>
</tr>
<tr>
<td>FCCSET</td>
<td>Federal Coordinating Committee on Science Engineering & Technology</td>
</tr>
<tr>
<td>FDSN</td>
<td>Federation of Digital Seismic Networks</td>
</tr>
<tr>
<td>FMS</td>
<td>formation microscanner</td>
</tr>
<tr>
<td>FY</td>
<td>fiscal year</td>
</tr>
<tr>
<td>GCR</td>
<td>Gulf Coast Repository</td>
</tr>
<tr>
<td>GEOSECS</td>
<td>Geochemical Ocean Sections Study</td>
</tr>
<tr>
<td>GLOBEC</td>
<td>Global Ocean Ecosystem Dynamics</td>
</tr>
<tr>
<td>GOOS</td>
<td>Global Ocean Observing System</td>
</tr>
<tr>
<td>GSC</td>
<td>Geological Survey of Canada</td>
</tr>
<tr>
<td>GSGP</td>
<td>Global Sedimentary Geology Program</td>
</tr>
<tr>
<td>HRB</td>
<td>hard-rock guide base</td>
</tr>
<tr>
<td>HRO</td>
<td>hard-rock orientation</td>
</tr>
<tr>
<td>IDAS</td>
<td>isothermal decompression analysis system</td>
</tr>
<tr>
<td>IFREMER</td>
<td>Institut Français de Recherche pour l'Exploitation de la Mer</td>
</tr>
<tr>
<td>ILP</td>
<td>International Lithosphere Program</td>
</tr>
<tr>
<td>IMT</td>
<td>Institut Méditerranéen de Technologie</td>
</tr>
<tr>
<td>INSU</td>
<td>Institut de Sciences de l'Univers</td>
</tr>
<tr>
<td>InterRIDGE</td>
<td>International Ridge Inter-Disciplinary Global Experiments</td>
</tr>
<tr>
<td>IOC</td>
<td>Intergovernmental Oceanographic Commission</td>
</tr>
<tr>
<td>IPD</td>
<td>International Phase of Ocean Drilling</td>
</tr>
<tr>
<td>IPR</td>
<td>intellectual property rights</td>
</tr>
<tr>
<td>IRIS</td>
<td>Incorporated Research Institutions for Seismology</td>
</tr>
<tr>
<td>JAMSTEC</td>
<td>Japan Marine Science and Technology Center</td>
</tr>
<tr>
<td>JAPEX</td>
<td>Japan Petroleum Exploration Company</td>
</tr>
<tr>
<td>JGOFS</td>
<td>Joint Global Ocean Flux Studies</td>
</tr>
<tr>
<td>JOIBOG</td>
<td>JOI Board of Governors</td>
</tr>
<tr>
<td>KTB</td>
<td>Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland</td>
</tr>
<tr>
<td>LANL</td>
<td>Los Alamos National Laboratory</td>
</tr>
<tr>
<td>LAST</td>
<td>lateral stress tool</td>
</tr>
<tr>
<td>LBL</td>
<td>Lawrence Berkeley Laboratory</td>
</tr>
<tr>
<td>LDEO</td>
<td>Lamont-Doherty Earth Observatory</td>
</tr>
<tr>
<td>LIPS</td>
<td>large igneous provinces</td>
</tr>
<tr>
<td>LRP</td>
<td>Long Range Plan</td>
</tr>
<tr>
<td>mbfs</td>
<td>meters below seafloor</td>
</tr>
<tr>
<td>MCS</td>
<td>multi-channel seismic</td>
</tr>
<tr>
<td>MDCB</td>
<td>motor-driven core barrel</td>
</tr>
<tr>
<td>MMS</td>
<td>Minerals Management Service</td>
</tr>
<tr>
<td>MOU</td>
<td>memorandum of understanding</td>
</tr>
<tr>
<td>MOR</td>
<td>mid-ocean ridge</td>
</tr>
<tr>
<td>MRC</td>
<td>Micropaleontological Reference Center</td>
</tr>
<tr>
<td>MST</td>
<td>multi-sensor track</td>
</tr>
<tr>
<td>NAD</td>
<td>North Atlantic Deepwater</td>
</tr>
<tr>
<td>NADP</td>
<td>Nansen Arctic Drilling Program</td>
</tr>
<tr>
<td>NAS</td>
<td>National Academy of Sciences</td>
</tr>
<tr>
<td>NATRE</td>
<td>North Atlantic Tracer Release Experiment</td>
</tr>
<tr>
<td>NERC</td>
<td>Natural Environment Research Council</td>
</tr>
<tr>
<td>NGDC</td>
<td>National Geophysical Data Center</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic & Atmospheric Administration</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>NSB</td>
<td>National Science Board</td>
</tr>
<tr>
<td>NSF</td>
<td>National Science Foundation</td>
</tr>
<tr>
<td>NSERC</td>
<td>National Science and Engineering Research Council (Canada)</td>
</tr>
<tr>
<td>OBS</td>
<td>ocean bottom seismometer</td>
</tr>
<tr>
<td>ODIN</td>
<td>Ocean Drilling Information Network</td>
</tr>
</tbody>
</table>
ODPC Ocean Drilling Program Council
OG organic geochemistry
OMDP Ocean Margin Drilling Program
ONR Office of Naval Research
ORI Ocean Research Institute of Univ. of Tokyo
OSN Ocean Seismic Network
PCS pressure core sampler
PDC poly-crystalline diamond compact (drilling bit)
PEC Performance Evaluation Committee
PPI Producer Price Index
RFP request for proposals
RFQ request for quotes
RIDGE Ridge Inter-Disciplinary Global Experiments (US)
ROV remotely-operated vehicle
SCM sonic core monitor
SCOR Scientific Committee on Ocean Research
SCS single-channel seismic
SES sidewall-entry sub
SNL Sandia National Laboratory
SOE Special Operating Expense

JOIDES Committees and Panels:

BCOM Budget Committee
DMP Downhole Measurements Panel
EXCOM Executive Committee
HP Information Handling Panel
LITHP Lithosphere Panel
OHIP Ocean History Panel
OPCOM Opportunity Committee (disbanded)
PANCHM Panel Chairs Meeting
PCOM Planning Committee

Detailed Planning Groups (DPG) and Working Groups (WG):

DH-WG Data-Handling WG
NAAG-DPG North Atlantic-Arctic Gateways DPG (disbanded)
NARM-DPG North Atlantic Rифed Margins DPG (disbanded)
OD-WG Offset Drilling WG (disbanded)
SL-WG Sea-Level WG (disbanded)
SWD-WG Shallow Water Drilling Working Group

FY93 Programs:

NAAG-I North Atlantic Arctic Gateways, first leg (Leg 151)
NARM Non-Volcanic I North Atlantic Rифed Margins non-volcanic, first leg (Leg 149)
NJ/MAT New Jersey / Middle Atlantic Transect (Leg 150)
504B deepening Hole 504B (Leg 148)

FY94 Programs:

NARM Volcanic I North Atlantic Rифed Margins volcanic, first leg (Leg 152)
MARK Mid-Atlantic Ridge at Kane fracture zone (Leg 153)
Ceara Rise Leg 154
Amazon Fan Leg 155
N. Barbados Ridge Leg 156
DCS Engineering Diamond Coring System engineering leg (Leg 157)
TAG Trans-Atlantic Geotraverse Hydrothermal Field (leg 158)
APPENDICES

Appendix 1.0.. German ODP Structure
Appendix 2.. Future Ocean Drilling
Appendix 3.0.. Timelines for renewal
Appendix 3.1.. FY93 NSF-ODP Resources and NSF-ODP Field Programs
Appendix 3.2.. Additional Funding Activities
Appendix 3.3.. Distinguished Lecturer series - 1992 & 1993 Series
Appendix 3.4.. Site Survey Augmentation Program
Appendix 3.5.. Workshops and Results Symposia
Appendix 3.6.. JOI/USSAC Summer Research Program
Appendices 4.0 - 4.1.. Jan 1993 Program Management Report - pages 1 & 2
Appendix 4.2.. Advisory Structure Review Committee
Appendix 5.0.. Science Operator Report Summary
Appendix 5.1.. Map of Cruise Legs
Appendix 5.2.. Leg 144 Summary
Appendix 5.3.. ODP Leg 144 Hole Location Map
Appendix 5.4.. Leg 144 Time Distribution Chart
Appendix 5.5.. Leg 144 Results
Appendix 5.6.. Leg 145 Summary
Appendix 5.7.. Leg 145 Site Location Map
Appendix 5.8.. Leg 145 Time Distribution Chart
Appendix 5.9.. Leg 146 Results
Appendix 5.10... Leg 146 Site Location Map
Appendix 5.11... Leg 146 Time distribution Chart
Appendix 5.12... Leg 145 Results
Appendix 5.13... Leg 147 Summary
Appendix 5.14... General Overview of Leg 144 - 156 Staffing
Appendix 5.15... Shipboard Participant Tally - Legs 101 - 147
Appendix 5.16... Publications Summary - Dates of Publications
Appendix 5.17... Proceedings Volumes Produced each Fiscal Year
Appendix 5.18... ODP Samples Distributed per Year by all Repositories
Appendix 5.19... ODP Samples Distributed per year by Repository
Appendix 5.20... Information Services Group Organization Chart
Appendix 5.21... Task Timelines for Computer/Database Upgrade RFP
Appendix 5.22... Core Repository Situation - Cost of Options
Appendix 5.23... Display of the ODP Program Sketch
Appendix 6.0... Wireline Logging Services EXCOM Report
Appendix 6.1... Recent Logging Operations
Appendix 6.2... Log Coverage of Legs 144 - 146
Appendix 6.3... Future Logging Operations Summary (Legs 148 - 150)
Appendix 6.4... Downhole Systems Development Summary
Appendix 6.5... Other Operational Developments
Appendix 7.0... PANCH DCS Recommendations
Appendix 7.1... PANCH ODP Scientific Output Recommendations
Appendix 7.2... IHP Computer RFP Status
Appendix 8.0... Budget Options - 6 Int. Partners (+ 7% inc. in partner support)
Appendix 8.1... Budget Options - 6 Int. Partners (+ 7% inc. in US & part. sup.)
Appendix 8.2... Budget Options - 7 International Partners
Appendix 8.3... ODP Budget Options - 5 International Partners (no Can/Aus)
Appendices 8.4 - 8.7... ODP Budget Status Report
Appendix 8.8... JOIDES Long Range Plan Budget vs. JOI Plan Budget
Appendix 9... FY94 Budget Planning
Appendix 10... Science Plan for FY94
Appendix 11.0.. EXCOM Action Item for Alternate Platforms
Appendix 11.1.. Other Platforms - Requirements
Appendix 11.2.. The scope of ODP
Appendix 12... RFP for International JOIDES Office Review Process
Appendix 13... Logging RFP Status and Schedule
Appendix 14... Public Relations Strategy
Appendix 15... New Partners for ODP
Appendix 1.0

GERMAN ODP STRUCTURE & R

Initial Contribution

50/50

DFG

Research Programme Marine Geosciences

BMFT

Research Programme Marine Geosciences

- ODP-related active (e.g. regional studies, site surveying)
- 5-10 million DM

Coordination

Priority Programme ODP/DSDP

ODP-related research projects: 40 Projects

ca. 4 million DM

Coordination:
- self-participation, meeting participation

TAMU

Representation:
- JOIDES, EXCOM, PCOM

German Annual ODP Colloquium

Finance

Advice

Others:
- OECD Megascience Forum (Expert Meeting, Brest 2-4 Nov. 1993)
- Public Relation

Regional Studies:
- Costa Rica: Margin (BGR/GEOMAR, Univ. Greifswald, 1992)

Next Meeting:
- 10-12 March 1993 Freiberg/Saxonia
Future Ocean Drilling

JOIDES Executive Committee Meeting

January 26 - 28, 1993

Coffs Harbour, N.S.W
Australia

Science and Technology Agency, Japan
Japan Marine Science and Technology Center
(1) Japan looks with great anticipation to the success of the ODP management as well as to the academic results derived from the ODP.

(2) There exists specific plans for the ODP period preceding 1998, but for years over beyond, details have yet to be known. It would be necessary to hold multinational discussions regarding the international cooperation plans for future ocean drilling. Such discussions should be made in close liaison with the ODP.

(3) Japan has been examining the future ocean drilling plans. We had the opportunity to explain the progress of our examination at the last ODP executive committee meeting. We also discussed our progress at the meeting of the experts on deep drilling. This was part of the Megascience Forum of the OECD held last January in Brest. Upon the present occasion we would like briefly to outline the latest status of the examination, based upon the provided materials.

(4) Japan has been diligently looking into the future ocean drilling plans as a contribution to the international cooperation plans for future ocean drilling. We would also like to contribute as much as possible to the multinational discussions on the subject.

(5) To promote international discussions on the international
cooperation plans for future ocean drilling, it is necessary to organize an international working group that liaises with the ODP. Japan is now preparing to host a preliminary meeting for the working group, on March 22, 1993.

(6) The items to be examined and discussed in this working group will be decided during the process of opinion exchange among each country's related persons. Japan wants to include the following items on the list, and wishes to examine and discuss future plans that will be based on international cooperation.

- How to coordinate future scientific plans
- How to deal with technical issues, such as a deep sea drilling vessel, deep sea drilling technology, and measurement technology
- How to secure funds and human resources
- How to manage the deep sea drilling vessel

(7) We earnestly hope that international cooperation for future ocean drilling will be further promoted based upon the ODP. We trust that the countries participating in the ODP will understand and work together for international discussions concerning international cooperation plans for future ocean drilling.
I. Significance of research

1. Expected Progress in Deep Earth Exploration by Ocean Drilling

In the ocean floor, there exist spreading centers, plate moving areas and subduction zones. Sediments of biological and terrigenous origins that reflect oceanic environment are accumulated on the igneous basement. Causes and results of a various kinds of natural phenomena that occur on the earth are concealed in them. It is expected that exploration and understanding of crustal structure, dynamics and structure of deep earth by sampling and investigation of long undisrupted cores and by observation using the deployment (network) of semi-permanent sites for deep earth exploration will contribute much to understanding the origin and evolution of the earth including land areas together with to the effort elucidating mechanisms of earthquakes and Tsunamis with an aim to their prediction.

Furthermore, evaluation of future changes of the global environments can not be achieved without careful investigation of drilled continuous cores and various long-term measurements using drill holes through read-out of records of the past global changes as well as study of mass balance and heat circulation in a global scale.

By drilling and coring deep crust, to the crust/mantle boundary (the Moho discontinuity) if situation permits, "material" composition of the deep crust can be clarified in conjunction with its geophysical structure and complete knowledge of the earth's interior will be attained.

2. Establishing an Advanced Global Observation Network using Long-term Ocean Floor Observatories

Proper understanding of geodynamic phenomena can only be accomplished by precisely measuring stress and strain in the deep crust as well as mass and heat transfer in the earth's interior. Development of monitoring network of...
Appendix 2.4

sters in the drilled holes under the ocean floor is essentially needed for such experiments. For this purpose, it is necessary to establish long-term observatory system of crustal movement by monitoring of deep earth structure and dynamic changes of the crust using wide network of hole-bottom seismographs, strain gauges etc. This type of ocean floor stations will take an important part in construction of the global observatory network by monitoring micro-seismicity and detecting precursors of earthquakes together with precise evaluation of mass and heat flux from the deep interior of the earth.

II. Promoting Research and Development of a Deep Ocean Drilling Vessel System

1. Necessity of a Deep Ocean Drilling Vessel System

It is desired for execution of proper deep earth exploration in the ocean floor by the methods mentined by not only the hole stability but also by any particular circumstances such as occurrence of hydrocarbon.

For this purpose a vital need is recognized for promotion of research and development of a new "Deep Ocean Drilling Vessel System" which enables us to penetrate the crust into desired depths at sites needed for establishing global observatory network.

2. Outline of the "Deep Ocean Drilling Vessel System" to be Developed

A new "Deep Ocean Drilling Vessel System" platform will be equipped with a riser and associated onboard machinery dealing with it efficiently using most advanced technology in extensive fields of engineering. in order to fulfil the task of coring long continuous samples and of establishing bottom-hole observatories regardless conditions of strata at any desired sites.

A principal specifications of the "Deep Ocean Drilling Vessel System" are;

Riser: 2,000 m long in an initial phase of development

4,000 m long ultimate target

Total Length of Drill Pipes: 47,000 m

Overall Length of Hull: approx. 165m, Gross Tonnage: approx. 15,000 tons

Attached figures: Concept drawing of "Deep Sea Drilling Vessel System"(plan)
CONCEPT DRAWING OF THE DEE VESSEL SYSTEM

Principal Particulars of the Deep Sea Drilling Vessel System (Proposal)

<table>
<thead>
<tr>
<th>Item</th>
<th>New System</th>
<th>JOIDES Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length Overall (m)</td>
<td>165</td>
<td>143.39</td>
</tr>
<tr>
<td>Breadth Molded (m)</td>
<td>27</td>
<td>21.34</td>
</tr>
<tr>
<td>Depth Molded (m)</td>
<td>11</td>
<td>9.75</td>
</tr>
<tr>
<td>Derrick Height (m)</td>
<td>77</td>
<td>62</td>
</tr>
<tr>
<td>Gross Tonnage (mt)</td>
<td>15,000</td>
<td>9,719</td>
</tr>
<tr>
<td>Dead Weight (mt)</td>
<td>10,000</td>
<td>8,647</td>
</tr>
<tr>
<td>Speed (kt)</td>
<td>13</td>
<td>13.0</td>
</tr>
<tr>
<td>Drill Pipe Length (m)</td>
<td>10,000</td>
<td>9,144</td>
</tr>
<tr>
<td>Riser Length (m)</td>
<td>2,000</td>
<td>-</td>
</tr>
<tr>
<td>Accommodation</td>
<td>130</td>
<td>122</td>
</tr>
</tbody>
</table>

Maximum Water Depth
2,000m with Riser
7,000m without Riser

Maximum Drilling Depth below Sea Floor
3,500m with Riser

Maximum Temperature in the Hole
400°C while drilling
300°C while measuring

- Drill Pipe (Inside)
- Riser Pipe (Outside)
- Drill Pipe
- Riser Pipe
- BOP: Blow Out Preventor against hydrocarbon gases
- Guide Base, Bottom Hole Assembly
- Casing Pipe
- Protection against the wall collapse
- Bit
International Activities

- Letter to partners
- Informal Expression of Intent
- Sign new MOU's
- Begin New MOU's

Reviews and Funding

- LRP by National Academy
- NSF Panel Review of 4 yr Program Plan
- NSB
- Start 4 yr Program Plan
 - FY 1993
 - Approved Budget: $43.2 M
- FY 1994
FY 1993 NSF-ODP RESOURCES

OPERATIONS & MANAGEMENT CONT. $25,400,000

U. S. SCIENCE ACTIVITIES

USSSP/USSAC CONTRACT $ 4,850,000
GRANTS / SHIPTIME $ 5,150,000

TOTAL = $35,400,000

CY 1993 NSF-ODP FIELD PROGRAMS

CARSON / BECKER (LEHIGH/MIAMI)
FLUID FLOW EXPERIMENTS AT CORKED HOLES ON CASCADIA MARGIN.
- Joint support by MGG - Canadian cooperation

TAYLOR (SOEST)
MR-1 AND SEISMIC SURVEY OF WOODLARK BASIN
- Australian cooperation

VON HERZEN (WOODS HOLE)
ALVIN STUDY OF THE TAG HYDROTHERMAL FIELD
- Canadian cooperation

KEIGWIN (WOODS HOLE)
SEDIMENTATION HISTORY IN WESTERN NORTH ATLANTIC

KASTENS (LAMONT)
STRUCTURE OF THE VEMA TRANSFORM
- Joint support with MGG - French Cooperation
ADDITIONAL FUNDING ACTIVITIES

MILLER / MOUNTAIN (RUTGERS/LAMONT)
COASTAL PLAIN DRILLING ON NEW JERSEY TRANSECT
- Joint support with Continental Dynamics Program

ORCUTT / STEPHEN (SIO/WHOI)
BOREHOLE SEISMMETER FOR OSN-1
- Joint support with Earth Science Division

JOI - IRIS PLANNING OFFICE FOR OCEAN SEISMIC NETWORK
- Joint support with Earth Sciences Division
JOI/USSAC
Distinguished Lecturer Series

The JOI/U.S. Science Support Program associated with the international Ocean Drilling Program is very pleased to announce the third annual JOI/USSAC Distinguished Lecturer Series. The speakers for the 1993-1994 season are:

Sherman Bloomer, Boston University
Early arc volcanism and the ophiolite problem: Evidence from ocean drilling in Western Pacific arcs and fore-arc.

Kathryn Gillis, WHOI
Hydrothermal systems at mid-ocean ridges: A view of the crustal component by deep sea drilling.

Roger Larson, University of Rhode Island
The Mid-Cretaceous superplume episode and its geological consequences.

David Rea, University of Michigan
Terrigenous sediment delivery to the deep sea - A record of mountain uplift, climate change, or sea level?

Brian Taylor, University of Hawaii
The tectonic evolution of volcanic systems in island arcs and back-arc basins.

James Zachos, UC Santa Cruz
The early Cenozoic transition from a greenhouse to an icehouse world: A deep sea perspective.

JOI/USSSP funding will cover the speakers' travel expenses. The deadline for applications is April 2, 1993. For more information contact:

Mary Reagan
Joint Oceanographic Institutions, Inc.
1755 Massachusetts Ave., NW, Suite 800
Washington, DC 20036
phone (202) 232-3900, fax (202) 232-8203
Appendix 3.4

Site Survey Augmentation (CY 8)
March 1, 1992-January 11, 1993

A. Jack Casey (U. Houston): FARANAUT Simrad Survey and Nautile Submersible Diving in the 15°20' Transform and Adjacent Ridge Segments. USSAC provided Jack with some support to participate in a French cruise where he can contribute his expertise to the survey and post-cruise analysis of basaltic and structural data. $15,107 funded.

B. Steve Holbrook and Mike Purdy (WHOI): Shear Wave Velocity Characterization of a Gas Hydrate Deposit at a Potential Drill Site on the Blake Outer Ridge. USSAC is providing some support to augment an NSF/MGG-funded cruise to enable scientists to put out a horizontal-component OBS for recording shear wave data and post-cruise processing of the data for additional seismic characterization of gas hydrates. $24,986 funded.

C. James Austin (UTIG): Site-Specific Surveying in the Northern Newfoundland Basin, Offshore Eastern Canada: A Joint U.S./Canadian/French Effort to Understand North Atlantic Non-Volcanic Conjugate Passive Continental Margins. USSAC is providing support for post-cruise processing of MCS data at UTIG. The data will be collected on the Canadian ship *Hudson* this summer. $55,678 requested. Revised budget of $43,826 approved by JOI. NSF approval received. In December JOI received a request for an additional $14,373. Decision is pending.

D. James Kennett (UCSB): Survey of Santa Barbara Basin, California for APC Coring During ODP Leg 146. Funds were provided for one day of survey time on the *R/V Farnell* to collect the necessary high-resolution seismic data to satisfy PPSP review to drill (APC) a 200 m site in the Santa Barbara Basin. PCOM put this site on the drilling schedule at their April 1992 meeting. $16,640 funded.

E. Kathleen Crane (LDGO): Upgrading the Site Survey Data for Leg 151 “The Atlantic Gateways” by the Production of a Norwegian-Greenland-Sea Atlas. Funds are requested to contribute support to the Norwegian Polar Research Institute for production of the atlas ($10,000), plus salary support for Crane and a transcriptionist to compile the data. $34,851 requested. Revised request is $28,299. Approval is pending.

F. Roger Flood (SUNY Stony Brook): Site Survey Augmentation for ODP Drilling on Amazon Fan. Funds are requested to add two days of ship time to Curay and Mountain’s Ceara Rise cruise on the *R/V Ewing* (Aug/Sept 1992) plus post-cruise processing. High-resolution seismic data would be collected as required by the JOIDES SSP. $104,676 requested. Approved budget was $80,783.

Total CY 8 requests: $265,219
Total funded to date: $181,342
CY 8 Program Plan budget: $120,000
A. Cretaceous Greenhouse Coring Project
October 4-9, 1992, Perugia, Italy
Convenors: E. Erba (Italy), R. Larson (USA), W. Sliter (USA), A. Fisher (USA), D. Bottjer (USA), G. Napoleone (Italy), I. Premoli-Silva (Italy). R. Larson wrote the USSAC proposal for the U.S. part of this effort.
$40,199 (CY 7 funds)

B. Results of Drilling in Western Pacific Active Margins and Marginal Basins
January 18-21, 1993, Monterey, CA.
Convenor: Brian Taylor
$36,559

C. Support for four U.S. scientists to give ODP-related talks at the International Geologic Congress in Kyoto in August 1992. Jamie Austin is coordinating the U.S. effort.
$10,000
The primary objective of the Summer Research Program (SRP) is to encourage undergraduates to pursue graduate studies in marine geology and geophysics (particularly ODP-related science).

The program was held at two sites in 1992:

School of Ocean & Earth Science & Technology
University of Hawaii C. Glenn, G. Moore 8/72

Lamont-Doherty Geological Observatory
Columbia University S. O'Connell, D. Hayes 8/68

The programs will be held again at both sites in 1993.

Both programs had a similar format.

- Most of each student's time was spent on ODP-related research. Students worked with at least one advisor. Students presented their research results orally and in writing.

- Lectures by guest speakers who explored various ODP topics were offered once or twice per week.

- Field trips (3 or 4) were run throughout both programs.
Program Management Report

* • Advisory Structure Review Committee Established (June 92)

* • PCOM Meeting in Canada (11 - 13 Aug. 92)

* • Review and Approval by U.S. Nat'l Science Board (14 Aug. 92)

* • RFP for JOIDES Office Issued (21 Aug. 92)

* • RFP for Logging Begun (Aug. 92)

* • Audit of Costs by NSF (Completed Sept. 92)

* • Bids for JOIDES Office RFP Received (1 Oct. 92)

* • JOIDES Office Moved to U. Wash (1 Oct. 92)

* • JOI and TAMU Reprogram Funds for DCS and Data Management (Nov. 92)

* • Meeting at JOI Regarding TAMU Data Management RFP (18 Nov. 92)

* • JOI Meeting to Select JOIDES Office Bid (16 Nov. 92)

* • RFP for Logging Approved by NSF (27 Nov. 92)

- Indemnification for J.R. Drilling Extended by U.S. Government (11 Dec. 92)

- FY94 Program Plan Calendar Coordinated with RFP (28 Dec. 92)

- Data Bank Personnel (Dec. 92/Jan. 93)

- Canada Renewal Issues (Jan. 93)

- Bids for Logging Received (15 Jan. 93)

- Outline of Public Relations Strategy (Jan. 93)

- Initiate Negotiation with NSF on Contract Renewal Post-93 (?)
 - Bidding/Internationalizing essentially complete

- Science Plan Received From PCOM(?)
 - Review of OES advisory structure to start
 - Major review completed, NSF renewal
 - All PEI reviews positive to my knowledge
 - Managed program to fund current objectives and start
 PCOM priorities for OES land testing
 Computer upgrades, data mgmt. syst.
Advisory Structure Review Committee

- EXCOM Recommends; Hans Dürbaum (FRG) to Chair

- Membership
 - B. Biju-Duval (F)
 - D. Eickelberg (FRG)
 - L. Garrison (US)
 - W. Hay (US)
 - R. Jarrard (US)
 - M. McNutt (US)
 - M. Salsbury (Can/Aus)

- First Meeting Before PCOM (30 Nov. 92)

- Attended PCOM Meeting (1-4 Dec. 92)

- Draft Report Expected March 93

- Final Meeting Planned 29 March - 1 April 93 at TAMU

- Report to EXCOM June 93
Appendix 5.0

JOIDES EXECUTIVE COMMITTEE
MEETING

Coff's Harbor, Australia

27-28 January 1993

TEXAS A&M UNIVERSITY
-- SCIENCE OPERATOR --

P. RABINOWITZ -
EXCOM LIAISON

I. SCIENCE OPERATIONS SINCE LAST EXCOM

LEG 144 - ATOLLS & GUYOTS B
(21 HOLES AT 11 SITES)

LEG 145 - NORTH PACIFIC TRANSECT
(25 HOLES AT 7 SITES)

LEG 146 - CASCADIA
(15 HOLES AT 6 SITES)

LEG 147 ONWARD

II. MISCELLANEOUS

SHIP SCHEDULE

PUBLICATIONS

REPOSITORY

INFORMATION SERVICES

III. APPENDIX

- NATURE, GEOTIMES, and EOS REPRINTS/PREPRINTS
OBJECTIVES

The Western Pacific is strewn with chains and clusters of Cretaceous seamounts, many of which are now flat-topped guyots with summit depths of about 1500 m. A large proportion of these are capped by shallow-water reefal sediments overlying the volcanic substrate. These reefs can serve as "dip sticks" to monitor relative changes in sea level during times of reef development, when upward reef growth paced tectonic subsidence of their foundations. The reefal sediments record in their mineralogy, textures, and fossils the timing and sense of rises and falls of relative sea level. The volcanic foundations of the reefs contain in their mineralogy and chemistry clues to the nature of the parent mantle material, the processes of melt extraction and differentiation, and the time of emplacement of the lavas.

THE GUYOTS THUS SHOULD YIELD CONSTRAINTS ON A BROAD RANGE OF FUNDAMENTAL QUESTIONS OF PACIFIC TECTONICS, GLOBAL SEA-LEVEL HISTORY, AND THE ENIGMA OF CARBONATE PLATFORM DROWNING.
Appendix 5.4

LEG 144
TOTAL TIME DISTRIBUTION

Days in Port 6.5%

Days Underway 19.7%

Days On Site 73.8%

Total Days of Leg = 62.8
LEG 144 - RESULTS

21 HOLES AT 11 SITES

3205 METERS CORED, 1088 METERS RECOVERED (33.9%)

CONCLUSIONS

- The formation of carbonate platforms on these guyots, and specifically their termination is not a simple matter of a mid-Cretaceous drowning event. At least three major episodes of carbonate platform drowning were observed from the guyots drilled; specifically: Albian, late Maastrichtian, and middle Eocene.

- Most of the carbonate platforms contain paleoecologic assemblages and sedimentary facies that indicate multiple relative sea level fluctuations during their growth.

- The Cretaceous and Eocene carbonate systems, in contrast to modern atolls having a coral-algal reef framework surrounding a lagoon, may have produced vast quantities of loose carbonate sediment in large shoal deposits with rudist-algal-coral boundstones forming relatively thin bioherms on the exterior ridges near the margins of the guyot.

- Hole 801C (drilled during ODP Leg 129) was reentered and logged during Leg 144 and a downhole packer experiment was conducted.

In summary, the development and termination of these former carbonate platforms is a complex function of sea level fluctuations and environmental change, and that modern Pacific atoll reef systems are an inadequate analog for the Cretaceous and lower Tertiary carbonate platforms of the ancient Pacific.
LEG 145 - SUMMARY

NORTH PACIFIC NEOGENE TRANSECT

YOKOHAMA, JAPAN - VICTORIA, CANADA
(24 July 1992) - (20 September 1992)

Co-Chief Scientist: Dr. David K. Rea, University of Michigan
Co-Chief Scientist: Dr. Ivan A. Basov, Institute of the Lithosphere, Moscow
TAMU Staff Scientist: Dr. Thomas Janecek, Texas A&M University

OBJECTIVES:

The primary objectives of ODP Leg 145 in the North Pacific Ocean were to determine:

(1) the high-resolution variations of surface and deep-water circulation and chemistry during the Neogene;
(2) the Late Cretaceous and Cenozoic history of atmospheric circulation, ocean chemistry, and continental climate; and
(3) the age and nature of the seafloor.

To address these objectives, sites will be drilled in horizontal and vertical (depth) transects to record latitudinal changes in ocean fronts and currents, to span changes in deep-water masses, and to place age constraints on plate motion history.
Leg 145
Time Distribution-In Days

Leg Totals

On Site 40.9
Port 4.1
Coring 23.6
Transit 17.3

On Site

Drilling 3.3
Tripping 8.0
ODP Repair 0.3
Logging 6.2
Other 0.6

Leg Totals
OBJECTIVES:

The Cascadia margin has been a zone of convergent plate motion since the Eocene as the Kula/Farallon and, most recently, the Juan de Fuca plates subducted obliquely beneath the North American plate. The process accreted several terranes, most notably the Crescent and Pacific Rim terranes to the north (Vancouver Island and Olympic Peninsula) and the Klamath Terrane to the south.

- The relationship between fluid flow and tectonics in the accretionary wedge formed at the Cascadia convergent plate boundary is the primary objective. Near Vancouver Island, drilling will examine the progressive changes in porosity of sediments that are accreted and deformed and the associated fluid flow. Near Oregon, the channeling of fluid outflow along faults will be the focus of the investigations.

- The seabed of the Cascadia margin is extensively underlain by a bottom-simulating reflector (BSR) associated with the base of a zone permeated by methane hydrate. This will be penetrated to determine its nature and whether free gas is present beneath it.
LEG 146
TOTAL TIME DISTRIBUTION

DAYS ON SITE 82.5%

DAYS IN PORT 7.8%

DAYS UNDER WAY 9.7%

TOTAL DAYS OF LEG = 62.9
LEG 146 - RESULTS

15 HOLES AT 6 SITES

2266 METERS CORED, 1190 METERS RECOVERED (52.5%)

CONCLUSIONS

Drilling during Leg 146 documented:

• progressive changes in porosity of accreted sediments and the associated fluid flow due to differential compaction of heterogeneous sediments within the fan;

• large discontinuities in organic and inorganic geochemistry of the porefluids and physical properties of the sediments due to the channeling of fluid outflow along faults; and

• the BSR appears to be caused by the presence of free gas below it.

Also during Leg 146, the ODP borehole seal (CORK) was installed in two holes (889C and 892B) to make long-term measurements of temperature gradients, fluid pressure, and fluid chemistry:

Leg 146 also conducted ultra-high resolution studies of sediments in the Santa Barbara Basin:

• drilling achieved recovery of 200m in high-sedimentation-rate silts to clay which were characterized by closely spaced laminae; and

• the recovered cores received standard geochemical monitoring and then were stored for further shore-based analysis.
The Hess Deep region is an example of a tectonic window where dismembered crustal sections created at a fast-spreading center (the East Pacific Rise) are exposed. The dike/gabbro transition, massive sections of gabbros, and peridotites crop out on the floor of this rift.

Leg 147 completed five holes at Site 894, located at the crest of the western end of the intra-rift ridge.

As of January 6, 1993, four holes were drilled at Site 895, located south of the intra-rift ridge and north of the Cocos-Nazca Ridge.

Material recovered at Site 894G includes:

- three upper cores composed of extensively metamorphosed and locally sheared gabbros which are cross-cut by a plagioclase phyric dike, suggesting a position close to the dike/gabbro transition; and

- lower cores (to TD at 154.5 mbsf) composed of alternating units of olivine gabbronorites and gabbronorites which exhibit varying grain size similar to that observed in upper level gabbros from ophiolite complexes and less extensive shearing and metamorphism.
Appendix 5.14

<table>
<thead>
<tr>
<th>Leg</th>
<th>Area</th>
<th>Scientists</th>
<th>Staffing</th>
<th>Territorial Permission</th>
<th>Preliminary Prospectus</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>Tokyo</td>
<td>Dr. Frank Hack</td>
<td>29 Scientists</td>
<td>Marshall Islands</td>
<td></td>
<td>Cretaceous and early Cenozoic history of the western Pacific seamounts and guyots.</td>
</tr>
<tr>
<td>145</td>
<td>North Pacific Transect</td>
<td>Dr. Ivan Basov, Dr. David K. Rea</td>
<td>30 Scientists</td>
<td></td>
<td></td>
<td>Paleocenography of northern latitudes Neogene and older sediments.</td>
</tr>
<tr>
<td>146</td>
<td>Cascadia</td>
<td>Dr. Graham Westbrook, Dr. Bobb Carson</td>
<td>28 Scientists</td>
<td>Canada</td>
<td></td>
<td>Determine nature of channelled and unchannelled flow of fluids escaping from the Cascadia margin.</td>
</tr>
<tr>
<td>147</td>
<td>Hess Deep</td>
<td>Dr. Catherine Mavel, Dr. Kathy Gillis</td>
<td>27 Scientists</td>
<td></td>
<td></td>
<td>Drill exposure of lower oceanic crust in Hess Deep.</td>
</tr>
<tr>
<td>148</td>
<td>Hole 504B</td>
<td>Dr. Jeffrey Alt, Dr. Hajimu Kinoshita</td>
<td>28 Scientists</td>
<td></td>
<td></td>
<td>Return to Hole 504B to continue coring operations.</td>
</tr>
<tr>
<td>149A</td>
<td>Transit - 14 March - 27 March 1993 - Panama - Ponta Delgada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>149B</td>
<td>Iberian Abyssal Plain</td>
<td>Dr. Dale Sawyer, Dr. Robert Whitmarsh</td>
<td>28 Scientists</td>
<td></td>
<td></td>
<td>Non-Volcanic Rifted Margins I: to determine the nature and age of the ocean-continent transition and the subsidence history of the continental block.</td>
</tr>
<tr>
<td>149C</td>
<td>Iberian Abyssal Plain</td>
<td>Dr. Robert Whitmarsh, Dr. Dale Sawyer</td>
<td>28 Scientists</td>
<td></td>
<td></td>
<td>Non-Volcanic Rifted Margins I: to determine the nature and age of the ocean-continent transition and the subsidence history of the continental block.</td>
</tr>
<tr>
<td>150</td>
<td>New Jersey Sea Level</td>
<td>Dr. Kenneth Miller, Dr. Gregory Mountain</td>
<td></td>
<td>To Be Determined</td>
<td></td>
<td>Late Oligocene-Miocene relative sea level changes.</td>
</tr>
<tr>
<td>151</td>
<td>Atlantic Arctic Gateways</td>
<td>Dr. Jörn Thiede, Dr. Eystein Jansen</td>
<td></td>
<td>To Be Determined</td>
<td></td>
<td>To provide a better understanding of high northern latitudes ocean role in global climate and ocean systems.</td>
</tr>
<tr>
<td>152</td>
<td>East Greenland Margin</td>
<td>Dr. Hans Christian Larsen, Dr. Andrew Saunders</td>
<td></td>
<td>To Be Determined</td>
<td></td>
<td>Volcanic Rifted Margins I: To determine the nature, age, and processes associated with this volcanic margin.</td>
</tr>
<tr>
<td>153</td>
<td>MARH</td>
<td>TBN</td>
<td>TBN</td>
<td>To Be Determined</td>
<td></td>
<td>To investigate the petrologic, hydrothermal, structural and geophysical aspects of the lower crust and upper mantle created at slow spreading centers.</td>
</tr>
<tr>
<td>154</td>
<td>Ceara Rise</td>
<td>Dr. William B. Curry, Dr. Nicholas J. Shackleton</td>
<td></td>
<td>To Be Determined</td>
<td></td>
<td>To identify the past depth and shape of the rising zone between northern and southern sources of deep water throughout the Neogene.</td>
</tr>
<tr>
<td>155</td>
<td>Amazon Fan</td>
<td>TBN</td>
<td>TBN</td>
<td>To Be Determined</td>
<td></td>
<td>To define the lithologies and ages of sediments and the relationship to sea-level change in modern fans.</td>
</tr>
<tr>
<td>156</td>
<td>Escoura Low</td>
<td>TBN</td>
<td>TBN</td>
<td>To Be Determined</td>
<td></td>
<td>To define the interrelationship of the dynamics of deeply sourced fluids, tectonic features, and geochemical signatures at this accretionary prism.</td>
</tr>
</tbody>
</table>
SHIPBOARD PARTICIPANT TALLY
LEGS 101-147

TOTAL: 1154 Participants
Publishing dates for ODP Proceedings volumes scheduled versus actual

Dates based on 12 months post-cruise (IR) and 36, 34, 32 (SR).
Proceedings Volumes Produced Each Fiscal Year

1/4/93
*projected
ODP SAMPLES DISTRIBUTED PER YEAR BY ALL REPOSITORIES AND SHIPBOARD

- **SHIP**
- **REPOSITORIES**
ODP SAMPLES DISTRIBUTED PER YEAR BY REPOSITORY

- ECR
- GCR
- WCR
Information Services Group

Organization Chart

- Information Services Manager
 - IS Assistant

Database Group
- Data Administrator
 - Database Administrator
 - Data Librarian

Applications Group
- Advisory Systems Analyst/Programmer
- Systems Analyst/Programmer
- Programmer/Analyst

Computer Operations Group
- Shore Based System Manager
- Shipboard System Manager
 (report to IS on shore and Logistics at sea, salaries paid by Logistics)

Network Services and Technology Group
- Senior Systems/Network Manager

User Support Services
- Senior Program Librarian/User Education Coordinator

January 9, 1993
Task Timelines for Computer/Database Upgrade RFP

<table>
<thead>
<tr>
<th>Task</th>
<th>1/1/93</th>
<th>1/1/94</th>
<th>1/1/95</th>
<th>1/1/96</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFP Released</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Letter of Intent Due</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation of Letters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recipients of Proposal Funds Identified (max 3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposal Preparation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposal Evaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcontract negotiations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcontract signed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcontract Contract work begins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delivery of system for testing on shore</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation of System on Ship</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shipboard Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completion of Installation and Testing on Ship</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modifications and Upgrading</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 5.22

\[\frac{\text{NO MOVEMENT OF CORES}}{\text{ECR, GCR, WCR, "BCR"}} \]

\[\begin{align*}
\text{Δ costs} & \sim 100K \quad \text{salaries}^* \\
& \sim 20-30K \quad \text{misc} \\
& = \boxed{120-130K} \quad \text{per year} \\
\text{Assumes leasing & refrigeration at no cost} \\
\text{one time start up costs of 200-250 K} \\
\end{align*} \]

\[\frac{\text{MOVEMENT OF ECR CORES TO "BCR"}}{} \]

\[\begin{align*}
\text{shipping} & \sim 330K \\
\text{start up} & \sim 100-150K \\
& = 430-480K \quad \text{one time cost} \\
\text{Assuming leasing & refrigeration at no cost} \\
\text{yearly savings to program} \sim 100K \\
\end{align*} \]

Assume salaries, communication etc. similar at "BCR" to ECR.
Wireline Logging Services

EXCOM Report

January 1993
Recent Logging Operations

Leg 144: W. Pacific Atolls and Guyots
- timing of volcanism and tectonics
- 6 holes logged (standard tools)

Leg 145: North Pacific transect
- high-resolution paleoceanography
- 4 holes logged (standard tools)
- magnetometer/susceptibility tool

Leg 146: Cascadia Basin
- clathrate in accretionary prism
- 5 holes logged (standard tools)
- VSP successful

Leg 147: Hess Deep
- oceanic crust/mantle transition
- 1 hole logged (standard tools)
- FMS (5 passes) over ~35 m interval
Future Logging Operations

Leg 148: Hole 504B
- up to 200°C in lower oceanic crust
- standard tools heat-tested to specified ratings before Leg
- array sonic tool available
- high-T tools tested and available (temperature, magnetometer, televiewer)
- packer/flowmeter and VSP planned

Leg 149: Iberian Abyssal Plain
- characterization of rifted margin
- standard tools and VSP planned
- MAXIS installation before transit
- Dipole sonic tool available

Leg 150: New Jersey Margin
- high-resolution sea level change
- standard tools planned
- magnetometer/susceptibility tool possibly available
Appendix 6.4

Downhole systems development

High-T temperature tool (BRGM)
- autoclave test in Houston successful (tool only)
- tool available for Leg 148

High-T cable (BRGM)
- first field test in Italy unsuccessful
- evaluation underway

High-T resistivity tool (CSM)
- 4-6 month manufacturing delay
- earliest possible test in March 1993

Directional shear sonic tool (LDEO)
- prototype test successful
- modifications underway
- field test in planned for February
Other operational developments

CD-ROM
- prototype endorsed by IHP (sept)
- prototype available for evaluation
 (Leg 139 logs and FMS images)
- Leg 143 CD-ROM in production for February publication
- Leg 144 CD-ROM in preparation

Logging schools
- 2-day school in Japan with 86 attendees during July 1992
- Possible school in ESF during 1993

Staffing
- LDEO staff stabilized
- Offer extended for Chief Scientist, contingent on proposal outcome
- Shipboard staffing through Leg 150 completed
- Subcontracts for staff at European analysis centers in place
DIAMOND CORING SYSTEM

• DCS Commitment from thematic panels is still the same (LITHP, OHP, TECP rank it higher than SGPP)

• SGPP and SMP concerned that DCS has delayed other developments

￥ Agree with TEDCOM "plan"

￥ If the next sea trial does not recover core, development should stop
ICH MEETING '92

ODP SCIENTIFIC OUTPUT
Recommendation

Scientific results should be presented in the form of thematic summary volumes. PANCH agrees that these summary volumes should be a collection of results papers for specific thematic topics that have been investigated by ODP. These results papers should be prepared and presented at symposia which are organized through the existing thematic panels. One symposium per year should be organized and the summary volume published via the most appropriate (to the topic) non-profit making society.
EXCOM action item:
ODP-TAMU as Science Operator to integrate all shipboard computer operations and further to implement upgrades, as per IHP/PCOM tasking, via international competition.

Computer RFP status:

0 RFP developed with advice from PCOM and DHWG. RFP issued mid-December 1992 for international competition by TAMU

* RFP has four stages;

1. Letters of intent due Feb 15 with selection of 2 or 3 bidders by late Feb. 1993

2. Detailed design stage using fixed fee contract with designs due May 31 1993

3. Implementation stage with completion no later than 2 years after start of stage 3, i.e approx. May 1995

4. Maintenance and upgrade
OCEAN DRILL'3 PROGRAM

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NSF funds</td>
<td>23.5M</td>
<td>25.0M</td>
<td>25.4M</td>
<td>27.2M</td>
</tr>
<tr>
<td>Int. funds</td>
<td>16.5M</td>
<td>16.6M</td>
<td>17.8M</td>
<td>17.7M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$40.0M</td>
<td>$41.6M</td>
<td>$43.2M</td>
<td>$44.9M</td>
</tr>
</tbody>
</table>

JOIDES LRP PROJECTION

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$41.2M</td>
<td>$43.6M</td>
<td>$45.3M</td>
<td>$48.3M</td>
</tr>
</tbody>
</table>

- FY 1993-1994 projections based on 6 international partners and 7% increase in international support level in 1994.
<table>
<thead>
<tr>
<th>Operations/Management</th>
<th>Actual FY 1991</th>
<th>Actual FY 1992</th>
<th>Estimated FY 1993</th>
<th>Project FY 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSF funds</td>
<td>23.5M</td>
<td>25.0M</td>
<td>25.4M</td>
<td>27.2M</td>
</tr>
<tr>
<td>Int. funds</td>
<td>16.5M</td>
<td>16.6M</td>
<td>17.8M</td>
<td>17.7M</td>
</tr>
<tr>
<td></td>
<td>$40.0M</td>
<td>$41.6M</td>
<td>$43.2M</td>
<td>$44.9M</td>
</tr>
</tbody>
</table>

JOIDES LRP PROJECTION

<table>
<thead>
<tr>
<th></th>
<th>$41.2M</th>
<th>$43.6M</th>
<th>$45.3M</th>
<th>$48.3M</th>
</tr>
</thead>
</table>

- **FY 1993-1994 projections based on 6 international partners and 7% increase in international support level in 1994.**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>58.8%</td>
<td>60.1%</td>
<td>59.0%</td>
<td>60.6%</td>
</tr>
<tr>
<td>Int.</td>
<td>41.2%</td>
<td>39.9%</td>
<td>41.0%</td>
<td>39.4%</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>NSF funds</td>
<td>23.5M</td>
<td>25.0M</td>
<td>25.4M</td>
<td>27.2M</td>
</tr>
<tr>
<td>Int. funds</td>
<td>16.5M</td>
<td>16.6M</td>
<td>17.8M</td>
<td>17.7M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$44.9M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$43.2M</td>
<td>$47.9M</td>
</tr>
<tr>
<td>JOIDES LRP PROJECTION</td>
<td>$41.2M</td>
<td>$43.6M</td>
<td>$45.3M</td>
<td>$48.3M</td>
</tr>
</tbody>
</table>

- FY 1993-1994 projections based on 6 international partners and 7% increase in international support level in 1994

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S</td>
<td>58.8%</td>
<td>60.1%</td>
<td>59.0%</td>
<td>56.8%</td>
</tr>
<tr>
<td>Fmt</td>
<td>41.2%</td>
<td>39.9%</td>
<td>41.0%</td>
<td>43.2%</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>NSF funds</td>
<td>23.5M</td>
<td>25.0M</td>
<td>25.4M</td>
<td>27.2M</td>
</tr>
<tr>
<td>Int. funds</td>
<td>16.5M</td>
<td>16.6M</td>
<td>17.8M</td>
<td>17.7M</td>
</tr>
<tr>
<td></td>
<td>$40.0M</td>
<td>$41.6M</td>
<td>$43.2M</td>
<td>$44.8M</td>
</tr>
</tbody>
</table>

JOIDES LRP PROJECTION

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$41.2M</td>
<td>$43.6M</td>
<td>$45.3M</td>
<td>$48.3M</td>
</tr>
</tbody>
</table>

- FY 1993-1994 projections based on 6 international partners and 7% increase in international support level in 1994.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>58.8%</td>
<td>60.1%</td>
<td>59.0%</td>
<td>64.9%</td>
</tr>
<tr>
<td>Int.</td>
<td>41.2%</td>
<td>39.9%</td>
<td>41.0%</td>
<td>35.1%</td>
</tr>
</tbody>
</table>
OCEAN DRILLING PROGRAM

Operations/Management

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NSF funds</td>
<td>23.5M</td>
<td>25.0M</td>
<td>25.4M</td>
</tr>
<tr>
<td>Int. funds</td>
<td>16.5M</td>
<td>16.6M</td>
<td>17.8M</td>
</tr>
<tr>
<td></td>
<td>$40.0M</td>
<td>$41.6M</td>
<td>$43.2M</td>
</tr>
</tbody>
</table>

JOIDES LRP PROJECTION

| | $41.2M | $43.6M | $45.3M | $48.3M |

FY 1993-1994 projections based on 6 international partners and 7% increase in international support level in 1994.

1. Five vs six international partner budget impact not resolved.
3. Interim planning target of $44.9M, with $41.9M lower limit, provided to JDF, Inc. for initial program plan development.
4. Updated planning target budget will be provided prior to BCOM meeting in March.
Table 1: Long Range Plan Budget Summary

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Operations</td>
<td></td>
</tr>
<tr>
<td>Science Operator</td>
<td></td>
</tr>
<tr>
<td>Headquarters</td>
<td>1.66</td>
<td>1.77</td>
<td>1.89</td>
<td>1.97</td>
<td>2.06</td>
<td>2.15</td>
<td>2.25</td>
<td>2.35</td>
<td>2.46</td>
<td>2.58</td>
<td>2.70</td>
<td>2.83</td>
<td>2.97</td>
<td>3.11</td>
</tr>
<tr>
<td>Science Services</td>
<td>3.15</td>
<td>3.45</td>
<td>3.64</td>
<td>3.84</td>
<td>4.05</td>
<td>4.27</td>
<td>4.50</td>
<td>4.75</td>
<td>5.01</td>
<td>5.29</td>
<td>5.58</td>
<td>5.90</td>
<td>6.22</td>
<td>6.57</td>
</tr>
<tr>
<td>Drilling & Engineering</td>
<td>3.12</td>
<td>3.16</td>
<td>3.30</td>
<td>3.44</td>
<td>3.58</td>
<td>3.74</td>
<td>3.90</td>
<td>4.07</td>
<td>4.24</td>
<td>4.43</td>
<td>4.62</td>
<td>4.83</td>
<td>5.04</td>
<td>5.27</td>
</tr>
<tr>
<td>Technology & Logistics</td>
<td>3.04</td>
<td>3.49</td>
<td>3.65</td>
<td>3.82</td>
<td>4.01</td>
<td>4.20</td>
<td>4.40</td>
<td>4.62</td>
<td>4.84</td>
<td>5.08</td>
<td>5.32</td>
<td>5.59</td>
<td>5.86</td>
<td>6.15</td>
</tr>
<tr>
<td>Science Operations</td>
<td>.96</td>
<td>1.00</td>
<td>1.05</td>
<td>1.11</td>
<td>1.16</td>
<td>1.23</td>
<td>1.29</td>
<td>1.36</td>
<td>1.43</td>
<td>1.50</td>
<td>1.58</td>
<td>1.66</td>
<td>1.75</td>
<td>1.85</td>
</tr>
<tr>
<td>Subtotal</td>
<td>11.93</td>
<td>12.87</td>
<td>13.53</td>
<td>14.18</td>
<td>14.86</td>
<td>15.59</td>
<td>16.34</td>
<td>17.15</td>
<td>17.98</td>
<td>18.88</td>
<td>19.80</td>
<td>20.81</td>
<td>21.84</td>
<td>22.95</td>
</tr>
<tr>
<td>Subtotal</td>
<td>30.50</td>
<td>31.89</td>
<td>33.12</td>
<td>34.36</td>
<td>35.64</td>
<td>36.99</td>
<td>38.39</td>
<td>39.86</td>
<td>41.37</td>
<td>42.97</td>
<td>44.62</td>
<td>46.37</td>
<td>48.17</td>
<td>50.07</td>
</tr>
<tr>
<td>Wireline Logging</td>
<td></td>
</tr>
<tr>
<td>Operations</td>
<td>1.28</td>
<td>1.36</td>
<td>1.41</td>
<td>1.47</td>
<td>1.53</td>
<td>1.60</td>
<td>1.67</td>
<td>1.74</td>
<td>1.81</td>
<td>1.89</td>
<td>1.97</td>
<td>2.05</td>
<td>2.14</td>
<td>2.23</td>
</tr>
<tr>
<td>Schlumberger Subcontract</td>
<td>1.68</td>
<td>1.76</td>
<td>1.86</td>
<td>1.97</td>
<td>2.09</td>
<td>2.21</td>
<td>2.35</td>
<td>2.49</td>
<td>2.64</td>
<td>2.80</td>
<td>2.97</td>
<td>3.15</td>
<td>3.33</td>
<td>3.53</td>
</tr>
<tr>
<td>Other Subcontracts</td>
<td>.07</td>
<td>.03</td>
</tr>
<tr>
<td>Subtotal</td>
<td>3.03</td>
<td>3.15</td>
<td>3.30</td>
<td>3.47</td>
<td>3.65</td>
<td>3.84</td>
<td>4.05</td>
<td>4.26</td>
<td>4.48</td>
<td>4.72</td>
<td>4.97</td>
<td>5.23</td>
<td>5.50</td>
<td>5.79</td>
</tr>
<tr>
<td>Program Management</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>1.60</td>
<td>1.67</td>
<td>1.75</td>
<td>1.84</td>
<td>1.94</td>
<td>2.03</td>
<td>2.13</td>
<td>2.24</td>
<td>2.35</td>
<td>2.47</td>
<td>2.59</td>
<td>2.72</td>
<td>2.86</td>
<td>3.00</td>
</tr>
<tr>
<td>Total Standard Operations</td>
<td>35.13</td>
<td>36.71</td>
<td>38.17</td>
<td>39.67</td>
<td>41.23</td>
<td>42.86</td>
<td>44.57</td>
<td>46.36</td>
<td>48.20</td>
<td>50.16</td>
<td>52.18</td>
<td>54.32</td>
<td>56.53</td>
<td>58.86</td>
</tr>
</tbody>
</table>

Special Requirements														
Science Operator														
Science Services	.00	.00	.20	.20	.27	.27	.27	.27	.27	.23	.23	.23	.23	.23
Drilling & Engineering	.41	.98	1.94	1.94	2.90	2.40	2.90	2.40	1.34	.99	1.34	.99	.99	.88
Technology & Logistics	.00	.00	.20	.20	.20	.20	.20	.20	.20	.20	.20	.20	.20	.20
Science Operations	.02	.17	.34	.34	.34	.24	.24	.24	.24	.24	.24	.24	.14	.14
Ship Operations	.59	.00	.00	1.00	.00	2.00	2.50	1.00	.00	.00	1.00	.60	.00	.00
Wireline Logging														
Special Tools	.00	.08	.38	.28	.35	.35	.25	.20	.25	.25	.25	.25	.25	.25
Program Management														
Special Program Needs	.01	.06	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
Total Special Requirements	1.02	1.29	3.06	3.96	4.06	5.46	6.36	4.31	2.30	1.91	3.26	2.41	1.00	1.00
TOTAL PROGRAM	36.15	38.00	41.23	43.63	45.29	48.32	50.93	50.67	50.50	52.07	55.44	56.73	57.53	59.86
Table 4: Long Range Plan Budget

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Operator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headquarters</td>
<td>1,664,500</td>
<td>1,773,847</td>
<td>1,888,038</td>
<td>1,971,595</td>
<td>2,059,769</td>
<td>2,152,824</td>
</tr>
<tr>
<td>Science Services</td>
<td>3,152,677</td>
<td>3,449,049</td>
<td>3,637,101</td>
<td>3,835,870</td>
<td>4,045,981</td>
<td>4,268,098</td>
</tr>
<tr>
<td>Drilling & Engineering</td>
<td>3,121,660</td>
<td>3,164,132</td>
<td>3,297,628</td>
<td>3,437,443</td>
<td>3,583,906</td>
<td>3,737,363</td>
</tr>
<tr>
<td>Technology & Logistics</td>
<td>3,035,832</td>
<td>3,485,463</td>
<td>3,650,608</td>
<td>3,824,343</td>
<td>4,007,142</td>
<td>4,199,510</td>
</tr>
<tr>
<td>Science Operations</td>
<td>956,831</td>
<td>1,002,083</td>
<td>1,053,566</td>
<td>1,107,878</td>
<td>1,165,183</td>
<td>1,225,650</td>
</tr>
<tr>
<td>Subtotal</td>
<td>11,931,500</td>
<td>12,874,574</td>
<td>13,526,941</td>
<td>14,177,129</td>
<td>14,861,981</td>
<td>15,583,445</td>
</tr>
<tr>
<td>Ship Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>18,572,500</td>
<td>19,019,008</td>
<td>19,589,578</td>
<td>20,177,266</td>
<td>20,782,584</td>
<td>21,406,061</td>
</tr>
<tr>
<td>Total Standard Operations</td>
<td>30,504,000</td>
<td>31,893,582</td>
<td>33,116,519</td>
<td>34,354,395</td>
<td>35,644,565</td>
<td>36,989,506</td>
</tr>
<tr>
<td>Wireline Logging</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations</td>
<td>1,280,912</td>
<td>1,357,664</td>
<td>1,414,749</td>
<td>1,474,528</td>
<td>1,537,140</td>
<td>1,601,700</td>
</tr>
<tr>
<td>Schlumberger Subcontract</td>
<td>1,677,088</td>
<td>1,756,555</td>
<td>1,861,948</td>
<td>1,973,665</td>
<td>2,092,085</td>
<td>2,217,610</td>
</tr>
<tr>
<td>Other Subcontracts</td>
<td>65,000</td>
<td>25,000</td>
<td>25,000</td>
<td>25,000</td>
<td>25,750</td>
<td>26,523</td>
</tr>
<tr>
<td>Subtotal</td>
<td>3,023,000</td>
<td>3,139,219</td>
<td>3,301,697</td>
<td>3,473,193</td>
<td>3,654,976</td>
<td>3,845,833</td>
</tr>
<tr>
<td>Program Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>1,600,000</td>
<td>1,671,999</td>
<td>1,755,599</td>
<td>1,843,379</td>
<td>1,935,548</td>
<td>2,032,325</td>
</tr>
<tr>
<td>Total Standard Operations</td>
<td>35,127,000</td>
<td>36,704,800</td>
<td>38,173,815</td>
<td>39,670,967</td>
<td>41,235,088</td>
<td>42,867,664</td>
</tr>
<tr>
<td>**Special Requirements * **</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Services</td>
<td>0</td>
<td>0</td>
<td>203,500</td>
<td>203,500</td>
<td>271,000</td>
<td>271,000</td>
</tr>
<tr>
<td>Drilling & Engineering</td>
<td>405,000</td>
<td>979,600</td>
<td>1,940,000</td>
<td>1,940,000</td>
<td>2,902,500</td>
<td>2,402,500</td>
</tr>
<tr>
<td>Technology & Logistics</td>
<td>0</td>
<td>0</td>
<td>195,000</td>
<td>195,000</td>
<td>195,000</td>
<td>195,000</td>
</tr>
<tr>
<td>Science Operations</td>
<td>17,000</td>
<td>170,000</td>
<td>335,000</td>
<td>335,000</td>
<td>335,000</td>
<td>235,000</td>
</tr>
<tr>
<td>Ship Operations</td>
<td>588,000</td>
<td>0</td>
<td>1,000,000</td>
<td>0</td>
<td>2,000,000</td>
<td></td>
</tr>
<tr>
<td>Wireline Logging</td>
<td></td>
<td>82,600</td>
<td>382,600</td>
<td>282,600</td>
<td>350,000</td>
<td>350,000</td>
</tr>
<tr>
<td>Special Tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Program Needs</td>
<td>13,000</td>
<td>63,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Special Requirements</td>
<td>1,023,000</td>
<td>1,295,200</td>
<td>3,056,100</td>
<td>3,956,100</td>
<td>4,053,500</td>
<td>5,453,500</td>
</tr>
<tr>
<td>Total Program</td>
<td>36,150,000</td>
<td>38,000,000</td>
<td>41,229,915</td>
<td>43,627,067</td>
<td>45,288,588</td>
<td>48,321,164</td>
</tr>
</tbody>
</table>

(in U.S. Dollars)
TABLE 5: Cost Estimates for Engineering Developments and Special Operations

<table>
<thead>
<tr>
<th>Engineering and Operational Requirements</th>
<th>Scientific Objective Addressed</th>
<th>Phase I 1989-1992 (x $1,000)</th>
<th>Phase II 1993-1996 (x $1,000)</th>
<th>Phase III 1997-2002 (x $1,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 4km Diamond Coring System</td>
<td>1, 2, 3, 4, 7, 8, 9, 13</td>
<td>1,390</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2. 6km Diamond Coring System</td>
<td>1, 2, 3, 4, 7, 8, 9</td>
<td>—</td>
<td>1,000</td>
<td>200</td>
</tr>
<tr>
<td>3. Slimline riser and blow-out preventer</td>
<td>1, 2, 3, 7, 8, 9, 10, 11, 12, 13</td>
<td>300</td>
<td>5,000</td>
<td>1,500</td>
</tr>
<tr>
<td>4. Improved sediment-coring systems</td>
<td>7, 8, 9, 10, 11, 12, 13</td>
<td>250</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td>5. Borehole seismometers and operations of seismic systems</td>
<td>2, 4, 5</td>
<td>600</td>
<td>600</td>
<td>600</td>
</tr>
<tr>
<td>6. High-temperature systems</td>
<td>3, 4, 11</td>
<td>1,000</td>
<td>1,510</td>
<td>750</td>
</tr>
<tr>
<td>7. Improved packer and fluid samplers</td>
<td>4, 5, 8, 11</td>
<td>800</td>
<td>500</td>
<td>300</td>
</tr>
<tr>
<td>8. Oriented core samples</td>
<td>1, 2, 5, 6</td>
<td>250</td>
<td>250</td>
<td>—</td>
</tr>
<tr>
<td>9. In-situ pressure sampler</td>
<td>7, 8</td>
<td>250</td>
<td>250</td>
<td>150</td>
</tr>
<tr>
<td>10. Slimline logging and borehole experiments</td>
<td>1, 2, 3, 4, 7, 8, 9, 10, 11, 13</td>
<td>650</td>
<td>2,000</td>
<td>—</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>5,490</td>
<td>11,310</td>
<td>3,650</td>
</tr>
<tr>
<td>11. Alternative vessels</td>
<td>1, 7, 8, 13, 15</td>
<td>—</td>
<td>2,000</td>
<td>2,500</td>
</tr>
<tr>
<td>Jack-ups</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Arctic D/V</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------</td>
<td>-------------</td>
<td>-------</td>
<td>---------------</td>
</tr>
<tr>
<td>Standard Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Operator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headquarters</td>
<td>1,971,595</td>
<td>1,905</td>
<td>2,059,769</td>
<td>1,980</td>
</tr>
<tr>
<td>Science Services</td>
<td>3,835,870</td>
<td>3,417</td>
<td>4,045,981</td>
<td>3,570</td>
</tr>
<tr>
<td>Drilling & Engineering</td>
<td>3,437,443</td>
<td>3,152</td>
<td>3,583,906</td>
<td>3,684</td>
</tr>
<tr>
<td>Technology & Logistics</td>
<td>3,824,343</td>
<td>4,170</td>
<td>4,007,142</td>
<td>4,374</td>
</tr>
<tr>
<td>Science Operations</td>
<td>1,107,878</td>
<td>1,151</td>
<td>1,165,183</td>
<td>1,142</td>
</tr>
<tr>
<td>Subtotal</td>
<td>14,177,129</td>
<td>14,861,981</td>
<td>15,071</td>
<td>15,583,445</td>
</tr>
<tr>
<td>Ship Operations</td>
<td>20,177,266</td>
<td>20,782,584</td>
<td>20,535</td>
<td>21,406,061</td>
</tr>
<tr>
<td>Subtotal</td>
<td>34,354,395</td>
<td>35,644,565</td>
<td>35,606</td>
<td>36,989,506</td>
</tr>
<tr>
<td>Wireline Logging</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations</td>
<td>1,474,528</td>
<td>1,723</td>
<td>1,537,140</td>
<td>1,999</td>
</tr>
<tr>
<td>Schlumberger Subcontract</td>
<td>1,973,665</td>
<td>1,941</td>
<td>2,092,085</td>
<td>2,090</td>
</tr>
<tr>
<td>Other Subcontracts</td>
<td>25,000</td>
<td>146</td>
<td>25,750</td>
<td>231</td>
</tr>
<tr>
<td>Subtotal</td>
<td>3,473,193</td>
<td>3,694,976</td>
<td>4,132</td>
<td>3,845,833</td>
</tr>
<tr>
<td>Program Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>1,843,379</td>
<td>1,520</td>
<td>1,935,548</td>
<td>1,560</td>
</tr>
<tr>
<td>Total Standard Operations</td>
<td>39,670,967</td>
<td>41,235,088</td>
<td>41,1486</td>
<td>42,867,664</td>
</tr>
<tr>
<td>Total Special Requirements</td>
<td>3,956,100</td>
<td>1,691</td>
<td>4,053,500</td>
<td>1,710</td>
</tr>
<tr>
<td>TOTAL PROGRAM</td>
<td>43,627,067</td>
<td>45,288,588</td>
<td>43,196</td>
<td>48,321,164</td>
</tr>
<tr>
<td>Description</td>
<td>Value</td>
<td>Δ LRP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Range Plan Projection</td>
<td>$48.6 M</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year Ago Projection</td>
<td>46.8</td>
<td>-1.8 M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSF Preliminary Target (12 Jan 93)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Partners</td>
<td>44.9</td>
<td>-3.7 M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Partners</td>
<td>41.9</td>
<td>-6.7 M</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SCIENCE PLAN FOR FY94
OTHER PLATFORMS

EXCOM action item:

PCOM should establish requirements and opportunities for use of alternative, additional and support platforms.

The advisory structure should assess technical and engineering suitability of such platforms to meet scientific objectives.

ODP-TAMU or JOI, Inc. as appropriate to contract such platforms.
OTHER PLATFORMS-- REQUIREMENTS

0 Shallow Water.
 To 40 meters Dynamic positioned the best
 Made need riser and BOP

 Less than 40 meters Jack up ??

ACTION; Shallow water working group will meet Feb 18-19
to discuss

0 Deep drilling

 Option 1 JOIDES Resolution with slim riser

 Option 2 Japanese vessel

Suggested ACTION: TEDCOM, PCOM to Review both
alternatives
Appendix 11.2

THE SCOPE OF ODP

Viewpoint 1: ODP operates one tool which is competed for by international science.

Viewpoint 2: ODP is a complete science program which directs its own science and uses all available tools to solve the science problems.

NOTE: ODP controls no science research dollars, it supports proposals driven by national and international science.

CONCLUSION 1: ODP should NOT consider using comingledd funds for science programs which require platforms other than the Resolution.

CONCLUSION 2: If viewpoint 2 is used then the planning process will be significantly different from present. It either implies using the Resolution part time or finding additional funds.
RFP for International JOIDES Office

Appendix 12.0

Review of Process

- RFP Issued 21 August 92
- Three Proposals Received
 - Canada I, Memorial University (Malpas and Hall)
 - Canada II, AGC (Gradstein and Riddihough)
 - UK (Kidd and Briden)
- Peer Reviewed
 B. Lewis - current PCOM chair
 N. Pisias - past PCOM chair
 O. Eldholm - past PCOM member
 M. Wiedecke - past international representative to JOIDES Office
 D. Maronde - current ODP Council member
 R. Dietrick - current RIDGE chair
- Rankings
 - Scientific and Technical Capabilities 30 points
 - Organizational And Administrative Capabilities 30 points
 - Facilities and Support Personnel 10 points
 - Budget and Contract Specifications 30 points
 UK 527
 Canada II 490
 Canada I 459
- JOI Panel (Baker, Fitzgerald, Kappel & Pyle) met 16 Nov. 92
- Selected bid by United Kingdom
- Pending EXCOM Advice/Comment, UK Bid will be Incorporated into FY95 Program Plan Process
- Issue of National Representation
Logging RFP
Status and Schedule

- RFP Issued 27 November 92

- Two Proposals Received by Deadline (15 January)
 - LDEO (Goldberg)
 - Utah (Jarrard)

- Peer Review (19 January - 15 February)
 P. Worthington
 P. Lysne
 K. Becker
 H. Draxler
 R. Wilkens
 C. Dorman (tentative)
 D. Falvey (tentative)
 J. Orcutt (tentative)

- JOI Review by 19 February
 JOI BOC Approval

- JOI Consults with EXCOM (Chairperson)

- Selected Proposal Becomes part of “Budget Outline”
 Submitted to BCOM 22 February

- BCOM Meeting 8 - 10 March

- Negotiation on Budget Follows Usual BCOM/JOI Procedures

- Draft Program Plan Due at JOI 26 March
Public Relations Strategy

- Attended Conferences for Science Museums and Technology Centers
- Reviewed Current, Decentralized Efforts
- Consulted with Geologist Experienced in NSF Education Programs and Museum Displays

JOI Strategy Proposes Three Objectives
- Increase Awareness in Funding Agencies
- Increase Educational Benefits from Publicly Funded Science
- Attract New Partners

And Unifying Theme: “A Record of our Changing Planet” (Plate Tectonics to Global Change)

ODP Public Relations Steering Committee
- Chairperson from EXCOM
- Representative from each Partner
- Additional Representatives/Liaisons from JOI, TAMU, LDEO
- Individual Scientists with Special Interest and Expertise

Meeting/Workshop
- Steering Committee
- Education Experts
- Exhibit Experts

- Confirm Objectives
- Discuss Problems
 - What? To Whom?
 - Name and Oil Image
 - Diverse Partners
 - Cost
- Prepare Strategy Report

Immediate Decision for FY94 Program Plan
- Staff Time
- Costs including Travel, Meeting, Consulting, Report
NEW PARTNERS FOR ODP

January 25, 1993

Prepared by D. J. Baker

INTRODUCTION

At the EXCOM meeting in June 1992, JOI was asked to outline a plan for exploring the possibility of new partners for ODP. EXCOM's rationale was two-fold: (1) given the current uncertainty of the Russian contribution, it is essential to find a way of either funding them or finding a replacement partner, and (2) new partners would add to the funding level and total participation of the worldwide geophysical community in ODP.

Since June, JOI has been discussing with a number of people where the likely new partners might come from. This report is a statement in that direction, and proposes action items to be considered by EXCOM.

BACKGROUND

At present, with six single-nation partners (U.S., France, Germany, Japan, U.K., Russia) and two consortia (Canada/Australia and ESF representing 12 countries), there are 20 countries participating in ODP. Since it provides slightly more than half of the funding, the U.S. has one co-chief on each leg. Each non-U.S. partner is promised one co-chief per year. However, with the number of partners that we have and with two-month legs, it takes 14 months to keep this promise. So far, the partners have been willing to accept this compromise.

At the current number of partners and level of subscription, the funding for the program operations is adequate. However, the budget is strained in certain areas such as new technology and engineering. It is essential for the health of the program that we sustain the current number of partners and subscription level, but if the program is to really reach its potential, we need to add a partner or two. Any additional partner would of course strain the facilities and co-chief arrangements, but the additional income would make that easier to bear.
RUSSIAN SITUATION

With the economic uncertainty in Russia and the current inability of the Russians to generate funds for the program, we need to find a way to fund the Russians or to find a replacement partner. At present, the only way to find funds to allow the Russians to stay in seems to be through funds in the State Department that have been earmarked for helping Russian recovery. Dr. Massey, with encouragement from Bob Corcil and Don Heinrichs, has written a strong letter to Dr. Bromley pointing out the importance of Russian participation in ODP. Massey has urged that OSTP work with the State Department to provide funds to allow the Russians to stay in ODP. Unfortunately, the State Department response has been slow, and it may be a while before anything happens. This is especially true with the change in administration that just took place. Baker will be meeting with the new Science Advisor, Dr. John Gibbons, on January 28 to raise the issue again.

There have been indications that private foundations might be willing to provide funds for Russian science, but as yet, these have not materialized.

POSSIBLE NEW PARTNERS

There are three major criteria for potential ODP partners: adequate number of geoscientists in the country, sufficient science infrastructure, and an economy healthy enough to pay the subscription fee. From these criteria, it appears that there are three likely groups of candidates (all the countries mentioned here have had a recently increasing GNP per capita, so the economies are relatively healthy):

1. One or more of the Asian "Tigers", namely Korea, Taiwan, Singapore, and/or Hong Kong, possibly in partnership with China. The first four of these all have high GNP and GNP per capita in the top 70 countries. Malaysia and Thailand might also be considered here.

2. South Africa, possibly in partnership with other African countries, or possibly with New Zealand or Australia and Canada.

3. A number of developing countries in South America, Africa/Middle East (for example Brazil, Chile, Argentina, Venezuela, Egypt, and Israel), and Asia (possibly including India, Pakistan, and Sri Lanka) under the umbrella of an IOC/World Bank consortium.

4. Possible new members of ESF. We assume that the ESF Consortium continues to watch here.
POSSIBLE, BUT LESS PROMISING

The countries in eastern Europe, although having adequate numbers of geologists, don't seem to have an adequate economy to either sustain membership in ODP or to join with Russia in a consortium. These would include Albania, Bulgaria, Hungary, Poland, Romania, and Yugoslavia.

A set of countries that is relatively healthy these days includes the tropical and island economies: Bahamas, Barbados, Grenada, Guadeloupe, Colombia, Martinique, Panama, French Polynesia, Santa Lucia, St. Vincent, and the Solomon Islands. These countries have relatively few geologists, and the economies are mainly tourist-based. Therefore it is not clear that a consortium could be developed for an ODP partnership. But it might be worth pursuing, at lower priority than the others above.

ACTION ITEMS

Each of the four possible partner arrangements mentioned above (Asian Tigers, South Africa/consortium, IOC/World Bank, ESF expansion) needs to be followed up to see if there is possible interest.

We propose, as the first action item, that a small delegation visit the appropriate officials in South Africa and in the Asian countries to ascertain interest in ODP. The second stage would be to establish closer contact among ODP scientists (PCOM and Panel representatives) and scientists in these countries. We also propose to try to get the IOC/World Bank consortium on track — it may require providing the IOC with some help in making contacts.

1. Bryan Lewis, incoming PCOM Chair, visited South Africa in October 1992. He can discuss what he learned at the EXCOM meeting.

2. Baker has kept in touch with G. Kullenberg about the possibilities of funding a third-world consortium through the World Bank, but no action as yet. Bernard Munsch has been helping IOC with this.

3. A visit to Korea and Taiwan should be made as soon as possible to ascertain interest. If possible, a visit to China could be made at the same time.

4. Pyle plans to talk to scientists in New Zealand after the EXCOM meeting about ODP consortia.